Skip to content

FC-KAN: Function Combinations in Kolmogorov-Arnold Networks

License

Notifications You must be signed in to change notification settings

hoangthangta/FC_KAN

Repository files navigation

FC-KAN

In this repository, we apply function combinations in low-dimensional data to design Kolmogorov-Arnold Networks, referred to as FC-KAN (Function Combinations in Kolmogorov-Arnold Networks). The experiments demonstrate that these combinations improve the model performance.

Our paper, "FC-KAN: Function Combinations in Kolmogorov-Arnold Networks," is available at https://arxiv.org/abs/2409.01763 or https://www.researchgate.net/publication/383659216_FC-KAN_Function_Combinations_in_Kolmogorov-Arnold_Networks.

How to combine?

We can use some element-wise operations to combine the functions' outputs by different methods.

def forward(self, x: torch.Tensor):
        #x = self.drop(x)
        #device = x.device
        
        if (len(self.func_list) == 1):
            raise Exception('The number of functions (func_list) must be larger than 1.')
        
        X = torch.stack([x] * len(self.func_list)) # size (number of functions, batch_size, input_dim)
        for layer in self.layers: 
            X = layer(X)
        
        output = X.detach().clone()
        if (self.combined_type == 'sum'): output = torch.sum(X, dim=0)
        elif (self.combined_type == 'product'):  output = torch.prod(X, dim=0)
        elif (self.combined_type == 'sum_product'): output = torch.sum(X, dim=0) +  torch.prod(X, dim=0)
        elif (self.combined_type == 'quadratic'): 
            output = torch.sum(X, dim=0) +  torch.prod(X, dim=0) 
            for i in range(X.shape[0]):
                output = output + X[i, :, :].squeeze(0)*X[i, :, :].squeeze(0)
        elif (self.combined_type == 'quadratic2'): # not better than "quadratic"
            output = torch.prod(X, dim=0) 
            for i in range(X.shape[0]):
                output = output + X[i, :, :].squeeze(0)*X[i, :, :].squeeze(0)
        elif (self.combined_type == 'cubic'): 
            outsum = torch.sum(X, dim=0)
            output = outsum +  torch.prod(X, dim=0) 
            for i in range(X.shape[0]):
                output = output + X[i, :, :].squeeze(0)*X[i, :, :].squeeze(0)
            output = output*outsum
        elif (self.combined_type == 'concat'):
            X_permuted = X.permute(1, 0, 2)
            output = X_permuted.reshape(X_permuted.shape[0], -1)
        elif (self.combined_type == 'concat_linear'):
            X_permuted = X.permute(1, 0, 2)
            output = X_permuted.reshape(X_permuted.shape[0], -1)
            output = F.linear(output, self.concat_weight)
        elif (self.combined_type == 'max'):
            output, _ = torch.max(X, dim=0)
        elif (self.combined_type == 'min'):
            output, _ = torch.min(X, dim=0)
        elif (self.combined_type == 'mean'):
            output = torch.mean(X, dim=0)
        else:
            raise Exception('The combined type "' + self.combined_type + '" does not support!')
            # Write more combinations here...

        #output = self.base_activation(output) # SiLU
        #output = output + F.normalize(output, p=2, dim=1)

        return output

Requirements

  • numpy==1.26.4
  • numpyencoder==0.3.0
  • torch==2.3.0+cu118
  • torchvision==0.18.0+cu118
  • tqdm==4.66.4

Training

Parameters

  • mode: working mode ("train" or "test"). Note that we did not write the test() function. =))
  • ds_name: dataset name ("mnist" or "fashion_mnist").
  • model_name: type of models (bsrbf_kan, efficient_kan, fast_kan, faster_kan, mlp, and fc_kan).
  • epochs: the number of epochs.
  • batch_size: the training batch size (default: 64).
  • n_input: The number of input neurons (default: 28^2 = 784).
  • n_hidden: The number of hidden neurons. We use only 1 hidden layer. You can modify the code (run.py) for more layers.
  • n_output: The number of output neurons (classes). For MNIST and Fashion-MNIST, there are 10 classes.
  • grid_size: The size of grid (default: 5). Use with bsrbf_kan and efficient_kan.
  • spline_order: The order of spline (default: 3). Use with bsrbf_kan and efficient_kan.
  • num_grids: The number of grids, equals grid_size + spline_order (default: 8). Use with fast_kan and faster_kan.
  • device: use "cuda" or "cpu" (default: "cuda").
  • n_examples: the number of examples in the training set used for training (default: 0, mean use all training data)
  • note: A note saved in the model name file.
  • n_part: the part of data used to train data (default: 0, mean use all training data, 0.1 means 10%).
  • func_list: the name of functions used in FC-KAN (default='dog,rbf'). Other functions are bs and base.
  • combined_type: the type of data combination used in the output (default='quadratic', others are sum, product, sum_product, concat, max, min, mean). We are developing other combinations.

Commands

See run.sh or run_fc.sh (bash run.sh or bash run_fc.sh in BASH) for details. We trained the models on GeForce RTX 3060 Ti (with other default parameters). For example, FC-KAN models (Difference of Gaussians + B-splines) can be trained on MNIST with different output combinations.

python run.py --mode "train" --model_name "fc_kan" --epochs 25 --batch_size 64 --n_input 784 --n_hidden 64 --n_output 10 --ds_name "mnist" --note "full_0" --n_part 0 --func_list "dog,bs" --combined_type "sum"

python run.py --mode "train" --model_name "fc_kan" --epochs 25 --batch_size 64 --n_input 784 --n_hidden 64 --n_output 10 --ds_name "mnist" --note "full_0" --n_part 0 --func_list "dog,bs" --combined_type "product"

python run.py --mode "train" --model_name "fc_kan" --epochs 25 --batch_size 64 --n_input 784 --n_hidden 64 --n_output 10 --ds_name "mnist" --note "full_0" --n_part 0 --func_list "dog,bs" --combined_type "sum_product"

python run.py --mode "train" --model_name "fc_kan" --epochs 25 --batch_size 64 --n_input 784 --n_hidden 64 --n_output 10 --ds_name "mnist" --note "full_0" --n_part 0 --func_list "dog,bs" --combined_type "quadratic"

python run.py --mode "train" --model_name "fc_kan" --epochs 25 --batch_size 64 --n_input 784 --n_hidden 64 --n_output 10 --ds_name "mnist" --note "full_0" --n_part 0 --func_list "dog,bs" --combined_type "concat"

References

Paper

Cite our work if this paper is helpful for you.

@misc{ta2024fckan,
    title={FC-KAN: Function Combinations in Kolmogorov-Arnold Networks},
    author={Hoang-Thang Ta and Duy-Quy Thai and Abu Bakar Siddiqur Rahman and Grigori Sidorov and Alexander Gelbukh},
    year={2024},
    eprint={2409.01763},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

Acknowledgement

Also, give me a star if you like this repo. Thanks!

Contact

If you have any questions, please contact: tahoangthang@gmail.com. If you want to know more about me, please visit website: https://tahoangthang.com.