forked from WisconsinAIVision/yolact_edge
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_loss.py
78 lines (59 loc) · 1.89 KB
/
plot_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import re, sys, os
import matplotlib.pyplot as plt
from utils.functions import MovingAverage
with open(sys.argv[1], 'r') as f:
inp = f.read()
patterns = {
'train': re.compile(r'\[\s*(?P<epoch>\d+)\]\s*(?P<iteration>\d+) \|\| B: (?P<b>\S+) \| C: (?P<c>\S+) \| M: (?P<m>\S+) \|( S: (?P<s>\S+) \|)? T: (?P<t>\S+)'),
'val': re.compile(r'\s*(?P<type>[a-z]+) \|\s*(?P<all>\S+)')
}
data = {key: [] for key in patterns}
for line in inp.split('\n'):
for key, pattern in patterns.items():
f = pattern.search(line)
if f is not None:
datum = f.groupdict()
for k, v in datum.items():
if v is not None:
try:
v = float(v)
except ValueError:
pass
datum[k] = v
if key == 'val':
datum = (datum, data['train'][-1])
data[key].append(datum)
break
def smoother(y, interval=100):
avg = MovingAverage(interval)
for i in range(len(y)):
avg.append(y[i])
y[i] = avg.get_avg()
return y
def plot_train(data):
plt.title(os.path.basename(sys.argv[1]) + ' Training Loss')
plt.xlabel('Iteration')
plt.ylabel('Loss')
loss_names = ['BBox Loss', 'Conf Loss', 'Mask Loss']
x = [x['iteration'] for x in data]
plt.plot(x, smoother([y['b'] for y in data]))
plt.plot(x, smoother([y['c'] for y in data]))
plt.plot(x, smoother([y['m'] for y in data]))
if data[0]['s'] is not None:
plt.plot(x, smoother([y['s'] for y in data]))
loss_names.append('Segmentation Loss')
plt.legend(loss_names)
plt.show()
def plot_val(data):
plt.title(os.path.basename(sys.argv[1]) + ' Validation mAP')
plt.xlabel('Epoch')
plt.ylabel('mAP')
x = [x[1]['epoch'] for x in data if x[0]['type'] == 'box']
plt.plot(x, [x[0]['all'] for x in data if x[0]['type'] == 'box'])
plt.plot(x, [x[0]['all'] for x in data if x[0]['type'] == 'mask'])
plt.legend(['BBox mAP', 'Mask mAP'])
plt.show()
if len(sys.argv) > 2 and sys.argv[2] == 'val':
plot_val(data['val'])
else:
plot_train(data['train'])