@article{Kim2023,
title = {Recovering Microscopic Images in Material Science Documents by Image Inpainting},
author = {Kim, T., & Yeo, B. C.},
year = {2023},
month = March,
journal = {Applied Sciences},
volume = {13},
number = {6},
pages = {4071},
publisher = {MDPI},
doi = {10.3390/app13064071},
copyright = {(https://creativecommons.org/licenses/by/4.0/},
}
- Python >= 3.6.13
- opencv >= 4.6.0
- Clone this repo :
git clone https://github.com/hmnd1257/threshold-mask.git
cd threshold-mask
- Our dataset structure
- This is the dataset structure we used.
images/
|____XXXX.jpeg # [.png, .jpg] format is also acceptable.
|____OOOO.jpeg
|____....
- Run
- If the save path does not exist, it will be created automatically.
# in <path-to-this-repo>/
python main.py --baseroot './images' --save_dir './results'
Step 1: Download your own images datasets.
Step 2: Open main.py
in python idle.
Step 3: Modify Arguments to set --baseroot
, --save_dir
and other parameters.
Step 4: Run main.py
Example: If you leave the other settings as default except for the path option, run the following command :
# in <path-to-this-repo>/
python main.py --baseroot <your_image_baseroot> --save_dir <save_path>
Arguments
<--baseroot>
(required): Path to the dataset directory.<--save_dir>
(required): Saves results here.<--segmentation>
4 corner segmentation of image (default: False).<--img_fill>
Refill extracted pixel values (default: True).<--img_show>
Show the image (default: False).<--save_fig>
Save the figure (default: True).<--threshold>
threshold setting (default: 200).
Input | ① | ② |
---|---|---|
Images |
output | segmented img | thresh_img | filled_mask | masked_img |
---|---|---|---|---|
① <--segmentation: True> |
||||
② <--segmentation: False> |