-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathevaluate_partseg.py
278 lines (219 loc) · 9.92 KB
/
evaluate_partseg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
'''
Evaluate classification performance with optional voting.
Will use H5 dataset in default. If using normal, will shift to the normal dataset.
'''
import tensorflow as tf
import numpy as np
import argparse
import socket
import importlib
import time
import os
import scipy.misc
import sys
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = BASE_DIR
sys.path.append(BASE_DIR)
sys.path.append(os.path.join(ROOT_DIR, 'models'))
sys.path.append(os.path.join(ROOT_DIR, 'utils'))
import provider
import modelnet_dataset
import modelnet_h5_dataset
sys.path.append(os.path.join(BASE_DIR, '..'))
import data_utils
import pc_util
import json
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=int, default=0, help='GPU to use [default: GPU 0]')
parser.add_argument('--model', default='pointnet2_cls_partseg', help='Model name: pointnet_cls or pointnet_cls_basic [default: pointnet_cls]')
parser.add_argument('--batch_size', type=int, default=1, help='Batch Size during training [default: 1]')
parser.add_argument('--num_point', type=int, default=2048, help='Point Number [256/512/1024/2048] [default: 1024]')
parser.add_argument('--model_path', default='../../../../pointnet2/log_partseg_chairs_augmented25rot/model.ckpt', help='model checkpoint file path [default: log/model.ckpt]')
parser.add_argument('--dump_dir', default='dump_partseg_augmented25rot/', help='dump folder path [dump]')
parser.add_argument('--with_bg', default = True, help='Whether to have background or not [default: True]')
parser.add_argument('--norm', default = True, help='Whether to normalize data or not [default: False]')
parser.add_argument('--center_data', default = True, help='Whether to explicitly center the data [default: False]')
parser.add_argument('--seg_weight', type=int, default=1.0, help='Segmentation weight in loss')
# parser.add_argument('--test_file', default = '../training_data/test_objectdataset_v1.pickle', help='Location of test file')
parser.add_argument('--test_file', default = '/home/vgd/object_dataset/parts/test_objectdataset_augmented25rot.h5', help='Location of test file')
parser.add_argument('--visu_mask', default = False, help='Whether to dump mask [default: False]')
parser.add_argument('--visu', default = False, help='Whether to dump image for error case [default: False]')
FLAGS = parser.parse_args()
DATA_DIR = os.path.join(ROOT_DIR, '../../../../')
BATCH_SIZE = FLAGS.batch_size
NUM_POINT = FLAGS.num_point
MODEL_PATH = FLAGS.model_path
GPU_INDEX = FLAGS.gpu
MODEL = importlib.import_module(FLAGS.model) # import network module
DUMP_DIR = FLAGS.dump_dir
if not os.path.exists(DUMP_DIR): os.mkdir(DUMP_DIR)
LOG_FOUT = open(os.path.join(DUMP_DIR, 'log_evaluate.txt'), 'w')
LOG_FOUT.write(str(FLAGS)+'\n')
WITH_BG = FLAGS.with_bg
NORMALIZED = FLAGS.norm
TEST_FILE = FLAGS.test_file
CENTER_DATA = FLAGS.center_data
SEG_WEIGHT = FLAGS.seg_weight
NUM_CLASSES = 6
SHAPE_NAMES = [line.rstrip() for line in \
open( '../training_data/chair_parts.txt')]
HOSTNAME = socket.gethostname()
np.random.seed(0)
print("Normalized: "+str(NORMALIZED))
print("Center Data: "+str(CENTER_DATA))
TEST_DATA, TEST_LABELS, TEST_PARTS = data_utils.load_parts_h5(TEST_FILE)
if (CENTER_DATA):
TEST_DATA = data_utils.center_data(TEST_DATA)
if (NORMALIZED):
TEST_DATA = data_utils.normalize_data(TEST_DATA)
color_map_file = '../part_color_mapping.json'
color_map = json.load(open(color_map_file, 'r'))
def output_color_point_cloud(data, seg, out_file):
with open(out_file, 'w') as f:
l = len(seg)
for i in range(l):
color = color_map[seg[i]]
f.write('v %f %f %f %f %f %f\n' % (data[i][0], data[i][1], data[i][2], color[0], color[1], color[2]))
def save_binfiles(pc, parts, fname):
print(pc.shape)
num_vertices = pc.shape[0]
print(num_vertices)
pc = pc.flatten()
object_bin = []
object_bin.append(num_vertices)
for i in range(pc.shape[0]):
object_bin.append(pc[i])
if i%3==2:
##insert dummy colors, normal nyu and label
for j in range(8):
object_bin.append(1.0)
# object_bin.append(parts[int((i-2)/3)])
object_bin = np.array(object_bin)
print(object_bin.shape)
object_bin.astype('float32').tofile(fname+'.bin')
# exit()
##output parts_bin
parts_bin = []
parts_bin.append(num_vertices)
for i in range(parts.shape[0]):
parts_bin.append(parts[i])
parts_bin.append(parts[i])
parts_bin = np.array(parts_bin)
print(parts_bin.shape)
parts_bin.astype('float32').tofile(fname+'_part.bin')
# print(parts_bin)
# print(np.unique(parts_bin))
# exit()
# for i in range(len(TEST_DATA)):
# fname = str(i)+'_gt_debug.obj'
# output_color_point_cloud(TEST_DATA[i], TEST_PARTS[i],fname)
# # save_binfiles(TEST_DATA[i], TEST_PARTS[i],fname)
# exit()
def log_string(out_str):
LOG_FOUT.write(out_str+'\n')
LOG_FOUT.flush()
print(out_str)
def evaluate(num_votes):
is_training = False
with tf.device('/gpu:'+str(GPU_INDEX)):
pointclouds_pl, labels_pl, parts_pl = MODEL.placeholder_inputs(BATCH_SIZE, NUM_POINT)
is_training_pl = tf.placeholder(tf.bool, shape=())
# simple model
seg_pred = MODEL.get_model(pointclouds_pl, is_training_pl)
total_loss = MODEL.get_loss(seg_pred, parts_pl)
# Add ops to save and restore all the variables.
saver = tf.train.Saver()
# Create a session
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
config.log_device_placement = True
sess = tf.Session(config=config)
# Restore variables from disk.
saver.restore(sess, MODEL_PATH)
log_string("Model restored.")
ops = {'pointclouds_pl': pointclouds_pl,
'labels_pl': labels_pl,
'parts_pl': parts_pl,
'is_training_pl': is_training_pl,
'seg_pred': seg_pred,
'loss': total_loss}
eval_one_epoch(sess, ops, num_votes)
def eval_one_epoch(sess, ops, num_votes=1, topk=1):
error_cnt = 0
is_training = False
total_seen = 0
loss_sum = 0
total_seen_class = [0 for _ in range(NUM_CLASSES)]
total_correct_class = [0 for _ in range(NUM_CLASSES)]
total_correct_seg = 0
current_data, current_label, current_parts = data_utils.get_current_data_parts_h5(TEST_DATA, TEST_LABELS, TEST_PARTS, NUM_POINT)
current_label = np.squeeze(current_label)
current_parts = np.squeeze(current_parts)
num_batches = current_data.shape[0]//BATCH_SIZE
for batch_idx in range(num_batches):
start_idx = batch_idx * BATCH_SIZE
end_idx = (batch_idx+1) * BATCH_SIZE
cur_batch_size = end_idx - start_idx
# Aggregating BEG
batch_loss_sum = 0 # sum of losses for the batch
batch_seg_sum = np.zeros((cur_batch_size, NUM_POINT, NUM_CLASSES)) # score for classes
for vote_idx in range(num_votes):
# rotated_data = provider.rotate_point_cloud_by_angle(current_data[start_idx:end_idx, :, :],
# vote_idx/float(num_votes) * np.pi * 2)
rotated_data = current_data[start_idx:end_idx, :, :]
feed_dict = {ops['pointclouds_pl']: rotated_data,
ops['parts_pl']: current_parts[start_idx:end_idx],
ops['labels_pl']: current_label[start_idx:end_idx],
ops['is_training_pl']: is_training}
loss_val, seg_val = sess.run([ops['loss'], ops['seg_pred']],
feed_dict=feed_dict)
batch_seg_sum += seg_val
batch_loss_sum += (loss_val * cur_batch_size / float(num_votes))
# pred_val_topk = np.argsort(batch_pred_sum, axis=-1)[:,-1*np.array(range(topk))-1]
# pred_val = np.argmax(batch_pred_classes, 1)
# Aggregating END
seg_val = np.argmax(batch_seg_sum, 2)
seg_correct = np.sum(seg_val == current_parts[start_idx:end_idx])
total_correct_seg += seg_correct
total_seen += cur_batch_size
loss_sum += batch_loss_sum
for i in range(start_idx, end_idx):
parts = current_parts[i]
for j in range(len(parts)):
part = parts[j]
total_seen_class[part] += 1
total_correct_class[part] += (seg_val[i-start_idx][j] == part)
total_parts_seen = 0
cum_sum = 0
part_accs = []
# fname = str(start_idx)+'_gt'
# fname = os.path.join(DUMP_DIR, fname)
# save_binfiles(current_data[start_idx,:,:], current_parts[start_idx],fname)
# fname = str(start_idx)+'_pred'
# fname = os.path.join(DUMP_DIR, fname)
# save_binfiles(current_data[start_idx,:,:], seg_val[0],fname)
# fname = str(start_idx)+'_pred.obj'
# fname = os.path.join(DUMP_DIR, fname)
# output_color_point_cloud(current_data[start_idx,:,:], seg_val[0],fname)
# fname = str(start_idx)+'_gt.obj'
# fname = os.path.join(DUMP_DIR, fname)
# output_color_point_cloud(current_data[start_idx,:,:], current_parts[start_idx],fname)
for i in range(NUM_CLASSES):
if (total_seen_class[i]==0):
part_accs.append(-1.0)
continue
part_acc = float(total_correct_class[i])/float(total_seen_class[i])
cum_sum += part_acc
part_accs.append(part_acc)
total_parts_seen +=1
log_string('total seen: %d' % (total_seen))
log_string('eval mean loss: %f' % (loss_sum / float(total_seen)))
log_string('eval seg accuracy: %f' % (total_correct_seg / (float(total_seen)*NUM_POINT)))
log_string('eval avg class acc: %f' % (cum_sum/float(total_parts_seen)))
for i, name in enumerate(SHAPE_NAMES):
log_string('%10s:\t%0.3f' % (name, part_accs[i]))
if __name__=='__main__':
with tf.Graph().as_default():
evaluate(num_votes=1)
LOG_FOUT.close()