-Extracting meaningful and timely insights from unbounded data is very challenging. Currently there are many open-source and proprietary systems for data stream processing. The large number of available systems is good but poses a major challenge in terms of selecting the right components or processing framework for different use cases. Understanding the required capabilities of streaming architectures is vital in making the right design or usage choice. As first step in achieving the objectives of the this project, we conducted a systematic literature review, propose a taxonomy and architecture, perform a comparative study of distributed data stream processing/analytics frameworks, and conducted a critical review of representative open source (Storm, Spark Streaming, Structured Streaming, Flink, Kafka Streams, KSQL) and commercial (IBM Streams) distributed data stream and graph processing frameworks. This study identified open problems (research opportunities) and can serve as a guide for organizations and individuals planning to implement a real-time data stream processing and analytics framework. The outcome of our review has been published in the IEEE Access entitled "A Survey of Distributed Data Stream Processing Frameworks". URL: https://ieeexplore.ieee.org/document/8864052
0 commit comments