-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_vanilaUnet.py
235 lines (179 loc) · 8.82 KB
/
train_vanilaUnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import argparse
import os
import time
import imageio
import numpy as np
import torch
import yaml
from tensorboardX import SummaryWriter
from torch.autograd import Variable
from datetime import datetime
from distutils.dir_util import copy_tree
from data import get_loader
from model.Unet import Unet
from utils import get_logger, create_dir
os.environ["CUDA_VISIBLE_DEVICES"] = '0'
parser = argparse.ArgumentParser()
parser.add_argument('--epoch', type=int, default=300, help='epoch number')
parser.add_argument('--lr_gen', type=float, default=5e-4, help='learning rate')
parser.add_argument('--batchsize', type=int, default=1, help='training batch size')
parser.add_argument('--trainsize', type=int, default=256, help='training dataset size')
parser.add_argument('--clip', type=float, default=0.5, help='gradient clipping margin')
parser.add_argument('--decay_rate', type=float, default=0.1, help='decay rate of learning rate')
parser.add_argument('--decay_epoch', type=int, default=50, help='every n epochs decay learning rate')
parser.add_argument('--dataset', type=str, default='tnbc', help='nuclei or tnbc')
opt = parser.parse_args()
CE = torch.nn.BCELoss()
def dice_loss(pred_mask, true_mask):
loss = 1 - dice(pred_mask, true_mask)
return loss
def calc_loss(pred, target, bce_weight=0.2):
bce = CE(pred, target)
dice = dice_loss(pred, target)
loss = bce * bce_weight + dice * (1 - bce_weight)
return loss
def dice(pred, target):
intersection = (abs(target - pred) < 0.05).sum()
cardinality = (target >= 0).sum() + (pred >= 0).sum()
return 2.0 * intersection / cardinality
class Network(object):
def __init__(self):
self.save_best = False
self.best_mIoU, self.best_dice_coeff = 0, 0
self.recall_array = [0]
self.fallout_array = [0]
self._init_configure()
self._init_logger()
def _init_configure(self):
with open('configs/config.yml') as fp:
self.cfg = yaml.safe_load(fp)
def _init_logger(self):
self.model_name = 'UNet/VanillaUnet'
log_dir = 'logs/' + self.model_name + '/' + opt.dataset + '/train' + '/{}'.format(
time.strftime('%Y%m%d-%H%M%S'))
self.logger = get_logger(log_dir)
print('RUNDIR: {}'.format(log_dir))
self.save_path = log_dir
self.image_save_path = log_dir + "/saved_images"
create_dir(self.image_save_path)
self.save_tbx_log = self.save_path + '/tbx_log'
self.writer = SummaryWriter(self.save_tbx_log)
def visualize_gt(self, var_map, i):
count = i
for kk in range(var_map.shape[0]):
pred_edge_kk = var_map[kk, :, :, :]
pred_edge_kk = pred_edge_kk.detach().cpu().numpy().squeeze()
pred_edge_kk *= 255.0
pred_edge_kk = pred_edge_kk.astype(np.uint8)
name = '{:02d}_gt.png'.format(count)
imageio.imwrite(self.image_save_path + "/train_" + name, pred_edge_kk)
def visualize_prediction(self, var_map, i):
count = i
for kk in range(var_map.shape[0]):
pred_edge_kk = var_map[kk, :, :, :]
pred_edge_kk = pred_edge_kk.detach().cpu().numpy().squeeze()
pred_edge_kk = (pred_edge_kk - pred_edge_kk.min()) / (pred_edge_kk.max() - pred_edge_kk.min() + 1e-8)
pred_edge_kk *= 255.0
pred_edge_kk = pred_edge_kk.astype(np.uint8)
name = '{:02d}_pred.png'.format(count)
imageio.imwrite(self.image_save_path + "/train_" + name, pred_edge_kk)
def visualize_val_gt(self, var_map, i):
count = i
for kk in range(var_map.shape[0]):
pred_edge_kk = var_map[kk, :, :, :]
pred_edge_kk = pred_edge_kk.detach().cpu().numpy().squeeze()
pred_edge_kk *= 255.0
pred_edge_kk = pred_edge_kk.astype(np.uint8)
name = '{:02d}_gt.png'.format(count)
imageio.imwrite(self.image_save_path + "/val_" + name, pred_edge_kk)
def visualize_val_prediction(self, var_map, i):
count = i
for kk in range(var_map.shape[0]):
pred_edge_kk = var_map[kk, :, :, :]
pred_edge_kk = pred_edge_kk.detach().cpu().numpy().squeeze()
pred_edge_kk = (pred_edge_kk - pred_edge_kk.min()) / (pred_edge_kk.max() - pred_edge_kk.min() + 1e-8)
pred_edge_kk *= 255.0
pred_edge_kk = pred_edge_kk.astype(np.uint8)
name = '{:02d}_pred.png'.format(count)
imageio.imwrite(self.image_save_path + "/val_" + name, pred_edge_kk)
def run(self):
# build models
model = Unet()
model.cuda()
optimizer = torch.optim.Adam(model.parameters(), opt.lr_gen)
image_root = self.cfg[opt.dataset]['image_dir']
gt_root = self.cfg[opt.dataset]['mask_dir']
val_image_root = self.cfg[opt.dataset]['val_image_dir']
val_gt_root = self.cfg[opt.dataset]['val_mask_dir']
train_loader, val_loader = get_loader(image_root, gt_root, val_image_root, val_gt_root, batchsize=opt.batchsize,
trainsize=opt.trainsize)
total_step = len(train_loader)
val_total_step = len(val_loader)
print("Let's go!")
for epoch in range(1, opt.epoch):
running_dice = 0.0
for i, pack in enumerate(train_loader, start=1):
optimizer.zero_grad()
images, gts = pack
images = Variable(images)
gts = Variable(gts)
images = images.cuda()
gts = gts.cuda()
pred = torch.sigmoid(model(images))
loss = calc_loss(pred, gts)
loss.backward()
optimizer.step()
self.visualize_gt(gts, i)
self.visualize_prediction(pred, i)
dice_coe = dice(pred, gts)
running_dice += dice_coe
if i % 10 == 0 or i == total_step:
self.logger.info(
'{} Epoch [{:03d}/{:03d}], Step [{:04d}/{:04d}], loss: {:.4f}, dice_coe: {:.4f}'.
format(datetime.now(), epoch, opt.epoch, i, total_step, loss.item(), dice_coe))
epoch_dice = running_dice / len(train_loader)
self.logger.info('Train dice coeff: {}'.format(epoch_dice))
self.writer.add_scalar('Train/DSC', epoch_dice, epoch)
val_running_dice = 0.0
for i, pack in enumerate(val_loader, start=1):
with torch.no_grad():
images, gts = pack
images = Variable(images)
gts = Variable(gts)
images = images.cuda()
gts = gts.cuda()
pred = torch.sigmoid(model(images))
val_loss = calc_loss(pred, gts)
self.visualize_val_gt(gts, i)
self.visualize_val_prediction(pred, i)
val_dice_coe = dice(pred, gts)
val_running_dice += val_dice_coe
if i % 10 == 0 or i == total_step:
self.logger.info(
'{} Epoch [{:03d}/{:03d}], Step [{:04d}/{:04d}], Validation loss: {:.4f}, dice_coe: {:.4f}'.
format(datetime.now(), epoch, opt.epoch, i, val_total_step, val_loss.item(), val_dice_coe))
val_epoch_dice = val_running_dice / len(val_loader)
self.logger.info('Validation dice coeff: {}'.format(val_epoch_dice))
self.writer.add_scalar('Validation/DSC', val_epoch_dice, epoch)
mdice_coeff = val_epoch_dice
if self.best_dice_coeff < mdice_coeff:
self.best_dice_coeff = mdice_coeff
self.save_best = True
if not os.path.exists(self.image_save_path):
os.makedirs(self.image_save_path)
copy_tree(self.image_save_path, self.save_path + '/best_model_predictions')
self.patience = 0
else:
self.save_best = False
self.patience += 1
# adjust_lr(optimizer, opt.lr_gen, epoch, opt.decay_rate, opt.decay_epoch)
Checkpoints_Path = self.save_path + '/Checkpoints'
if not os.path.exists(Checkpoints_Path):
os.makedirs(Checkpoints_Path)
if self.save_best:
torch.save(model.state_dict(), Checkpoints_Path + '/Model_gen.pth')
self.logger.info('current best dice coef {}'.format(self.best_dice_coeff))
self.logger.info('current patience :{}'.format(self.patience))
if __name__ == '__main__':
train_network = Network()
train_network.run()