Skip to content

Latest commit

 

History

History
121 lines (116 loc) · 6.71 KB

assignment1.md

File metadata and controls

121 lines (116 loc) · 6.71 KB


Syllabus | Slides and Assignments | Project | Lecturer

Assignment 1

    1. Watch this repo to get notified for new issues.
    1. Clone this repo to your local machine (Do NOT do this inside your DSCI-633 directory):
git clone https://github.com/hil-se/fds.git
    1. Copy ONLY the folder assignments/ from this repo to your repo DSCI-633 folder.
fds/
|-- assignments   ---
|-- ***             |
DSCI-633/           |
|-- assignments  <---

Inside the DSCI-633 repo, it should look like mine. Clarification: this is just for using the assignment code in your own repo. Just copy and paste from local directories, do not try to link these two repos in any way.

DSCI-633/assignments/Preparation> python A1.py
SepalLengthCm            5.0
SepalWidthCm             3.0
PetalLengthCm            1.6
PetalWidthCm             0.2
Species          Iris-setosa
Name: 20, dtype: object
0         Iris-setosa
1         Iris-setosa
2         Iris-setosa
3         Iris-setosa
4         Iris-setosa
           ...
130    Iris-virginica
131    Iris-virginica
132    Iris-virginica
133    Iris-virginica
134    Iris-virginica
Name: Species, Length: 135, dtype: object
   SepalLengthCm  SepalWidthCm  PetalLengthCm  PetalWidthCm      Species
0             5.1           3.5            1.4           0.2  Iris-setosa
1             4.9           3.0            1.4           0.2  Iris-setosa
2             4.7           3.2            1.3           0.2  Iris-setosa
3             4.6           3.1            1.5           0.2  Iris-setosa
4             5.0           3.6            1.4           0.2  Iris-setosa
5             5.4           3.9            1.7           0.4  Iris-setosa
6             4.6           3.4            1.4           0.3  Iris-setosa
7             5.0           3.4            1.5           0.2  Iris-setosa
8             4.4           2.9            1.4           0.2  Iris-setosa
9             4.9           3.1            1.5           0.1  Iris-setosa
10            5.4           3.7            1.5           0.2  Iris-setosa
11            4.8           3.4            1.6           0.2  Iris-setosa
12            4.8           3.0            1.4           0.1  Iris-setosa
13            5.7           3.8            1.7           0.3  Iris-setosa
14            5.1           3.8            1.5           0.3  Iris-setosa
15            5.4           3.4            1.7           0.2  Iris-setosa
16            5.1           3.7            1.5           0.4  Iris-setosa
17            4.6           3.6            1.0           0.2  Iris-setosa
18            5.1           3.3            1.7           0.5  Iris-setosa
19            4.8           3.4            1.9           0.2  Iris-setosa
20            5.0           3.0            1.6           0.2  Iris-setosa
21            5.0           3.4            1.6           0.4  Iris-setosa
22            5.2           3.5            1.5           0.2  Iris-setosa
23            5.2           3.4            1.4           0.2  Iris-setosa
24            4.7           3.2            1.6           0.2  Iris-setosa
25            4.8           3.1            1.6           0.2  Iris-setosa
26            5.4           3.4            1.5           0.4  Iris-setosa
27            5.2           4.1            1.5           0.1  Iris-setosa
28            5.5           4.2            1.4           0.2  Iris-setosa
29            4.9           3.1            1.5           0.1  Iris-setosa
30            5.0           3.2            1.2           0.2  Iris-setosa
31            5.5           3.5            1.3           0.2  Iris-setosa
32            4.9           3.1            1.5           0.1  Iris-setosa
33            4.4           3.0            1.3           0.2  Iris-setosa
34            5.1           3.4            1.5           0.2  Iris-setosa
35            5.0           3.5            1.3           0.3  Iris-setosa
36            4.5           2.3            1.3           0.3  Iris-setosa
37            4.4           3.2            1.3           0.2  Iris-setosa
38            5.0           3.5            1.6           0.6  Iris-setosa
39            5.1           3.8            1.9           0.4  Iris-setosa
40            4.8           3.0            1.4           0.3  Iris-setosa
41            5.1           3.8            1.6           0.2  Iris-setosa
42            4.6           3.2            1.4           0.2  Iris-setosa
43            5.3           3.7            1.5           0.2  Iris-setosa
44            5.0           3.3            1.4           0.2  Iris-setosa
Iris-setosa     1.000000
Iris-setosa     1.000000
Iris-setosa     1.000000
Iris-setosa     1.000000
Iris-setosa     1.000000
Iris-versicolor 0.992155
Iris-versicolor 0.999921
Iris-versicolor 0.999999
Iris-versicolor 0.997254
Iris-versicolor 0.999990
Iris-virginica  1.000000
Iris-virginica  0.840581
Iris-virginica  0.999999
Iris-virginica  0.999988
Iris-virginica  0.753482
    1. Modify A1.py to print out the 12th training data point.
    1. Modify A1.py to print out the "SepalWidthCm" column.
    1. Modify A1.py to print out training data points with "SepalWidthCm" < 2.5.
    1. Modify A1.py so that a Decision Tree Classifier is used to make the prediction instead of Gaussian Naive Bayes. Use the Decision Tree Classifier from scikit-learn directly (without any specific parameters).
    1. Run A1.py again and snapshot the output (including the command python A1.py).
    1. Save the snapshot as A1.png and put it under assignments/Prepation/ in your repo. Should look like this. Note: the example snapshot will look different from the correct one.
    1. Commit to the remote server of Github.

Grading Policy

  • 6 (out of 7) points will be received if all the required files can be found in the submitted repo.
  • The rest 1 point will be given based on whether the screenshot A1.png is correct.
  • Note: be sure to add your github repo url to the Google sheet since this is how this and all the future assignments will be graded.