-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathA9.py
25 lines (24 loc) · 918 Bytes
/
A9.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
from my_Logistic import my_Logistic
import pandas as pd
import numpy as np
if __name__ == "__main__":
# Load training data
data_train = pd.read_csv("../data/Iris_train.csv")
# Separate independent variables and dependent variables
independent = ["SepalLengthCm", "SepalWidthCm", "PetalLengthCm", "PetalWidthCm"]
X = data_train[independent]
# Learn a binary classifier to predict whether Species = Iris-setosa
y = np.array([1 if label == "Iris-setosa" else 0 for label in data_train["Species"]])
# Train model
clf = my_Logistic()
clf.fit(X,y)
# Load testing data
data_test = pd.read_csv("../data/Iris_test.csv")
X_test = data_test[independent]
# Predict
predictions = clf.predict(X_test)
# Predict probabilities
probs = clf.predict_proba(X_test)
# Print results
for i,pred in enumerate(predictions):
print("%s\t%f" %(pred, probs[i]))