-
Notifications
You must be signed in to change notification settings - Fork 70
/
res.js
80 lines (74 loc) · 2.5 KB
/
res.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
/**
* res.js
* @authors Joe Jiang (hijiangtao@gmail.com)
* @date 2017-04-17 14:02:24
*
* For a undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.
*
* Format
* The graph contains n nodes which are labeled from 0 to n - 1. You will be given the number n and a list of undirected edges (each edge is a pair of labels).
*
* You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.
*
* Note:
*
* (1) According to the definition of tree on Wikipedia: “a tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.”
*
* (2) The height of a rooted tree is the number of edges on the longest downward path between the root and a leaf.
*
* @param {number} n
* @param {number[][]} edges
* @return {number[]}
*/
let findMinHeightTrees = function(n, edges) {
let elen = edges.length, // 边数长度
nlist = [], // 节点列表
deglist = [], //度数列表
adj = new Array(n); //存储连边信息
for (let i = 0; i < n; i++) {
nlist.push(i);
deglist.push(0);
adj[i] = new Set();
}
for (let i = 0; i < elen; i++) {
let source = edges[i][0],
target = edges[i][1];
adj[source].add(target);
adj[target].add(source);
deglist[source]++;
deglist[target]++;
}
// 结果中只能是一个元素或者两个元素, 或者全部元素 (如果有多个树结构)
while (nlist.length > 2) {
let lenNow = nlist.length,
dellist = [];
for (let i = 0; i < lenNow; i++) {
let node = nlist[i];
if (!deglist[node]) {
//当前节点边数为0
nlist.splice(i--, 1);
lenNow--;
} else if (deglist[node] === 1) {
//删除边并减少两端节点的degree
let anothernode = -1;
for (let j = 0; j < lenNow; j++) {
if (i === j) continue;
if (adj[node].has(nlist[j])) {
anothernode = nlist[j];
break;
}
}
adj[node].delete(anothernode);
adj[anothernode].delete(node);
dellist.push(anothernode);
deglist[node] = 0;
nlist.splice(i--, 1);
lenNow--;
}
}
for (let i = dellist.length - 1; i >= 0; i--) {
deglist[dellist[i]]--;
}
}
return nlist;
};