|
| 1 | +import numpy as np |
| 2 | +from sys import maxsize |
| 3 | +import xxhash |
| 4 | +import matplotlib.pyplot as plt |
| 5 | + |
| 6 | +class AdaptiveLocalHashing: |
| 7 | + def __init__(self, k: int, epsilon: float, w_asr: float = 0.5, w_variance: float = 0.5): |
| 8 | + """ |
| 9 | + Initialize the Adaptive Local Hashing (ALH) protocol. |
| 10 | +
|
| 11 | + Parameters |
| 12 | + ---------- |
| 13 | + k : int |
| 14 | + Attribute's domain size. Must be an integer greater than or equal to 2. |
| 15 | + epsilon : float |
| 16 | + Privacy guarantee. Must be a positive numerical value. |
| 17 | + w_asr : float, optional |
| 18 | + Weight given to the Adversarial Success Rate (ASR) in the objective function. Default is 0.5. |
| 19 | + w_variance : float, optional |
| 20 | + Weight given to the variance in the objective function. Default is 0.5. |
| 21 | +
|
| 22 | + Raises |
| 23 | + ------ |
| 24 | + ValueError |
| 25 | + If `k` is not >= 2, `epsilon` is not positive, or the weights are invalid. |
| 26 | + """ |
| 27 | + if not isinstance(k, int) or k < 2: |
| 28 | + raise ValueError("k must be an integer >= 2.") |
| 29 | + if epsilon <= 0: |
| 30 | + raise ValueError("epsilon must be a numerical value greater than 0.") |
| 31 | + if not (0 <= w_asr <= 1) or not (0 <= w_variance <= 1): |
| 32 | + raise ValueError("Weights must be between 0 and 1.") |
| 33 | + |
| 34 | + # Normalize the weights so that their sum is 1 |
| 35 | + total_weight = w_asr + w_variance |
| 36 | + self.w_asr = w_asr / total_weight |
| 37 | + self.w_variance = w_variance / total_weight |
| 38 | + self.k = k |
| 39 | + self.epsilon = epsilon |
| 40 | + self.g = self.optimize_parameters() |
| 41 | + |
| 42 | + # Calculate probability for GRR-based perturbation |
| 43 | + self.p = np.exp(self.epsilon) / (np.exp(self.epsilon) + self.g - 1) |
| 44 | + self.q = 1 / self.g |
| 45 | + |
| 46 | + def get_parameter_range(self) -> np.ndarray: |
| 47 | + """ |
| 48 | + Get a range of g values to optimize over. |
| 49 | +
|
| 50 | + Returns |
| 51 | + ------- |
| 52 | + numpy.ndarray |
| 53 | + A range of g values between 2 and max(k, exp(epsilon) + 1). |
| 54 | + """ |
| 55 | + return np.arange(2, max(self.k, int(np.round(np.exp(self.epsilon)) + 1) + 1)) |
| 56 | + |
| 57 | + def optimize_parameters(self) -> int: |
| 58 | + """ |
| 59 | + Grid-search optimization for the value of g to balance variance and ASR. |
| 60 | +
|
| 61 | + Returns |
| 62 | + ------- |
| 63 | + int |
| 64 | + The optimized value of g. |
| 65 | + """ |
| 66 | + # Define range of g values to search over |
| 67 | + g_values = self.get_parameter_range() |
| 68 | + |
| 69 | + # Perform grid search to find the best g |
| 70 | + best_g = 2 |
| 71 | + best_obj_value = float('inf') |
| 72 | + |
| 73 | + for g in g_values: |
| 74 | + asr = self.get_asr(g) |
| 75 | + variance = self.get_variance(g) |
| 76 | + obj_value = self.w_asr * asr + self.w_variance * variance |
| 77 | + if obj_value < best_obj_value: |
| 78 | + best_g = g |
| 79 | + best_obj_value = obj_value |
| 80 | + |
| 81 | + return best_g |
| 82 | + |
| 83 | + def obfuscate(self, input_data: int) -> tuple[int, int]: |
| 84 | + """ |
| 85 | + Obfuscate the input data using the ALH mechanism. |
| 86 | +
|
| 87 | + Parameters |
| 88 | + ---------- |
| 89 | + input_data : int |
| 90 | + The true input value to be obfuscated. Must be in the range [0, k-1]. |
| 91 | +
|
| 92 | + Returns |
| 93 | + ------- |
| 94 | + tuple[int, int] |
| 95 | + A tuple containing: |
| 96 | + - The sanitized (obfuscated) value (int) within the optimized hash domain size `g`. |
| 97 | + - The random seed (int) used for hashing. |
| 98 | +
|
| 99 | + Raises |
| 100 | + ------ |
| 101 | + ValueError |
| 102 | + If `input_data` is not in the range [0, k-1]. |
| 103 | + """ |
| 104 | + if input_data < 0 or input_data >= self.k: |
| 105 | + raise ValueError("input_data must be in the range [0, k-1].") |
| 106 | + |
| 107 | + # Generate random seed and hash the user's value |
| 108 | + rnd_seed = np.random.randint(0, maxsize, dtype=np.int64) |
| 109 | + hashed_input_data = (xxhash.xxh32(str(input_data), seed=rnd_seed).intdigest() % self.g) |
| 110 | + |
| 111 | + # GRR-based perturbation |
| 112 | + domain = np.arange(self.g) |
| 113 | + if np.random.binomial(1, self.p) == 1: |
| 114 | + sanitized_value = hashed_input_data |
| 115 | + else: |
| 116 | + sanitized_value = np.random.choice(domain[domain != hashed_input_data]) |
| 117 | + |
| 118 | + return sanitized_value, rnd_seed |
| 119 | + |
| 120 | + def estimate(self, noisy_reports: list) -> np.ndarray: |
| 121 | + """ |
| 122 | + Estimate frequencies from noisy reports collected using the Adaptive Local Hashing (ALH) mechanism. |
| 123 | +
|
| 124 | + This method applies unbiased estimation to recover approximate frequencies of values |
| 125 | + in the domain `[0, k-1]`. The LH mechanism maps input values to a hash domain of size `g`, |
| 126 | + perturbs the mapped values, and reports the noisy results. The method uses `p` (true value probability) |
| 127 | + and `q` (false value probability) to correct for this perturbation. |
| 128 | +
|
| 129 | + Parameters |
| 130 | + ---------- |
| 131 | + noisy_reports : list of tuple (int, int) |
| 132 | + A list of noisy reports collected from users. Each report is a tuple containing: |
| 133 | + - `value` : The obfuscated hash-mapped value. |
| 134 | + - `seed` : The random seed used for hashing during the LH mechanism. |
| 135 | +
|
| 136 | + Returns |
| 137 | + ------- |
| 138 | + np.ndarray |
| 139 | + An array of estimated frequencies for each value in the domain `[0, k-1]`. |
| 140 | + The output array has size `k` and sums to 1. |
| 141 | +
|
| 142 | + Raises |
| 143 | + ------ |
| 144 | + ValueError |
| 145 | + If `noisy_reports` is empty. |
| 146 | + """ |
| 147 | + n = len(noisy_reports) # Number of reports |
| 148 | + if n == 0: |
| 149 | + raise ValueError("Noisy reports cannot be empty.") |
| 150 | + |
| 151 | + # Count the occurrences of each value in the noisy reports |
| 152 | + support_counts = np.zeros(self.k) |
| 153 | + |
| 154 | + # Hash-based support counting for LH protocols |
| 155 | + for value, seed in noisy_reports: |
| 156 | + for v in range(self.k): |
| 157 | + if value == (xxhash.xxh32(str(v), seed=seed).intdigest() % self.g): |
| 158 | + support_counts[v] += 1 |
| 159 | + |
| 160 | + # Unbiased frequency estimation |
| 161 | + freq_estimates = (support_counts - n * self.q) / (n * (self.p - self.q)) |
| 162 | + |
| 163 | + # Ensure non-negative estimates and normalize |
| 164 | + return np.maximum(freq_estimates, 0) / np.sum(np.maximum(freq_estimates, 0)) |
| 165 | + |
| 166 | + def attack(self, val_seed): |
| 167 | + """ |
| 168 | + Perform a privacy attack on an obfuscated value generated using the Adaptive Local Hashing (ALH) protocol. |
| 169 | +
|
| 170 | + This method attempts to infer the true input value by leveraging the obfuscated hash-mapped value |
| 171 | + and the corresponding random seed used during hashing. The method reconstructs the possible |
| 172 | + candidate values that could produce the same hash output and randomly selects one of them. |
| 173 | +
|
| 174 | + Parameters |
| 175 | + ---------- |
| 176 | + val_seed : tuple (int, int) |
| 177 | + A tuple containing: |
| 178 | + - `obfuscated value` : The hash-mapped value generated during obfuscation. |
| 179 | + - `seed` : The random seed used for hashing. |
| 180 | +
|
| 181 | + Returns |
| 182 | + ------- |
| 183 | + int |
| 184 | + The inferred true value of the input. If no valid candidate values are found, a random value |
| 185 | + within the domain `[0, k-1]` is returned. |
| 186 | + """ |
| 187 | + |
| 188 | + lh_val = val_seed[0] |
| 189 | + rnd_seed = val_seed[1] |
| 190 | + |
| 191 | + ss_lh = [] |
| 192 | + for v in range(self.k): |
| 193 | + if lh_val == (xxhash.xxh32(str(v), seed=rnd_seed).intdigest() % self.g): |
| 194 | + ss_lh.append(v) |
| 195 | + |
| 196 | + if len(ss_lh) == 0: |
| 197 | + return np.random.randint(self.k) |
| 198 | + else: |
| 199 | + return np.random.choice(ss_lh) |
| 200 | + |
| 201 | + def get_variance(self, g: int = None) -> float: |
| 202 | + """ |
| 203 | + Compute the variance of the LH mechanism for a given g. |
| 204 | +
|
| 205 | + Parameters |
| 206 | + ---------- |
| 207 | + g : int, optional |
| 208 | + Hash domain size. If None, use the optimized value of g. |
| 209 | +
|
| 210 | + Returns |
| 211 | + ------- |
| 212 | + float |
| 213 | + The variance of the LH mechanism. |
| 214 | + """ |
| 215 | + if g is None: |
| 216 | + g = self.g |
| 217 | + |
| 218 | + p = np.exp(self.epsilon) / (np.exp(self.epsilon) + g - 1) |
| 219 | + q = 1 / g |
| 220 | + |
| 221 | + return q * (1 - q) / (p - q) ** 2 |
| 222 | + |
| 223 | + def get_asr(self, g: int = None) -> float: |
| 224 | + """ |
| 225 | + Compute the Adversarial Success Rate (ASR) of the LH mechanism for a given g. |
| 226 | +
|
| 227 | + Parameters |
| 228 | + ---------- |
| 229 | + g : int, optional |
| 230 | + Hash domain size. If None, use the optimized value of g. |
| 231 | +
|
| 232 | + Returns |
| 233 | + ------- |
| 234 | + float |
| 235 | + The Adversarial Success Rate (ASR). |
| 236 | + """ |
| 237 | + if g is None: |
| 238 | + g = self.g |
| 239 | + |
| 240 | + return np.exp(self.epsilon) / ((np.exp(self.epsilon) + g - 1) * max(self.k / g, 1)) |
| 241 | + |
| 242 | + def plot_objective_function(self) -> None: |
| 243 | + """ |
| 244 | + Plot the objective function over a range of g values, highlighting the optimal g value. |
| 245 | + """ |
| 246 | + g_values = self.get_parameter_range() |
| 247 | + objective_values = [] |
| 248 | + |
| 249 | + for g in g_values: |
| 250 | + asr = self.get_asr(g) |
| 251 | + variance = self.get_variance(g) |
| 252 | + objective_value = self.w_asr * asr + self.w_variance * variance |
| 253 | + objective_values.append(objective_value) |
| 254 | + |
| 255 | + plt.plot(g_values, objective_values, marker='o', label='Objective Function') |
| 256 | + plt.xlabel('g') |
| 257 | + plt.ylabel('Objective Function Value') |
| 258 | + plt.title(f'Objective Function vs. g (epsilon={self.epsilon})') |
| 259 | + plt.grid(True) |
| 260 | + |
| 261 | + # Highlight the best g value |
| 262 | + plt.axvline(self.g, color='r', linestyle='--', label=f'Optimal g={self.g}') |
| 263 | + plt.legend() |
| 264 | + plt.yscale('log') |
| 265 | + plt.show() |
0 commit comments