-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathpytorch_model1.py
113 lines (83 loc) · 2.87 KB
/
pytorch_model1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import os
import random
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from datagen import gen_data
SIZE = 128
ITERATIONS = 5100
BATCH_SIZE = 8
SEED = 1
DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(1, 64, kernel_size=9, stride=1, padding=4, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(64, 1, kernel_size=3, stride=1, padding=1, bias=False),
nn.Sigmoid()
)
def forward(self, x):
return self.conv(x)
def data_generator():
rnd = np.random.RandomState(SEED)
while True:
raw, norm = gen_data(rnd, BATCH_SIZE)
yield torch.from_numpy(raw).permute(0, 3, 1, 2), \
torch.from_numpy(norm).permute(0, 3, 1, 2)
def main():
random.seed(SEED)
np.random.seed(SEED)
torch.manual_seed(SEED)
# ----------
# Model and Optimizer
# ----------
model = Net().to(DEVICE)
optimizer = torch.optim.Adam(model.parameters(), lr=1e-3)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1000, gamma=0.5, last_epoch=-1)
# ----------
# Data
# ----------
dataIter = data_generator()
# ----------
# Training
# ----------
for iteration in range(1, ITERATIONS + 1):
rawData, normData = next(dataIter)
rawData = rawData.to(DEVICE)
normData = normData.to(DEVICE)
optimizer.zero_grad()
loss = F.mse_loss(model(rawData), normData)
loss.backward()
optimizer.step()
print("[Iteration %d] [loss: %f]" % (iteration, loss.item()))
if iteration % 100 == 0:
torch.save(model.state_dict(), os.path.join('weight', '{}.pth'.format(iteration)))
if iteration < 4000:
scheduler.step()
if __name__ == "__main__":
main()