forked from fengdu78/Coursera-ML-AndrewNg-Notes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path7 - 3 - Regularized Linear Regression (11 min).srt
1481 lines (1185 loc) · 27.1 KB
/
7 - 3 - Regularized Linear Regression (11 min).srt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1
00:00:00,260 --> 00:00:01,490
For linear regression, we had
对于线性回归的求解 我们之前
(字幕整理:中国海洋大学 黄海广,haiguang2000@qq.com )
2
00:00:01,680 --> 00:00:03,130
previously worked out two learning
推导了两种学习算法
3
00:00:03,490 --> 00:00:05,010
algorithms, one based on
一种基于梯度下降
4
00:00:05,180 --> 00:00:07,650
gradient descent and one based on the normal equation.
一种基于正规方程
5
00:00:08,750 --> 00:00:09,740
In this video we will take
在这段视频中 我们将继续学习
6
00:00:09,890 --> 00:00:11,640
those two algorithms and generalize
这两个算法 并把它们推广
7
00:00:12,290 --> 00:00:13,380
them to the case of regularized
到正则化线性回归中去
8
00:00:14,330 --> 00:00:17,640
linear regression. Here's the
这是我们上节课推导出的
9
00:00:18,100 --> 00:00:19,540
optimization objective, that we
正则化线性回归的
10
00:00:20,200 --> 00:00:22,380
came up with last time for regularized linear regression.
优化目标
11
00:00:23,360 --> 00:00:24,580
This first part is our
前面的第一部分是
12
00:00:24,980 --> 00:00:27,240
usual, objective for linear regression,
一般线性回归的目标函数
13
00:00:28,170 --> 00:00:29,300
and we now have this additional
而现在我们有这个额外的
14
00:00:30,200 --> 00:00:31,750
regularization term, where londer
正则化项 其中 λ
15
00:00:32,450 --> 00:00:34,960
is our regularization parameter, and
是正则化参数
16
00:00:35,220 --> 00:00:36,690
we like to find parameters theta,
我们想找到参数 θ
17
00:00:37,160 --> 00:00:38,550
that minimizes this cost function,
能最小化代价函数
18
00:00:39,030 --> 00:00:41,280
this regularized cost function, J of theta.
即这个正则化代价函??数 J(θ)
19
00:00:41,840 --> 00:00:43,030
Previously, we were using
之前 我们使用
20
00:00:43,440 --> 00:00:45,180
gradient descent for the original
梯度下降求解原来
21
00:00:46,620 --> 00:00:48,060
cost function, without the regularization
没有正则项的代价函数
22
00:00:48,770 --> 00:00:49,820
term, and we had
我们用
23
00:00:50,060 --> 00:00:51,990
the following algorithm for regular
下面的算法求解常规的
24
00:00:52,370 --> 00:00:53,620
linear regression, without regularization.
没有正则项的线性回归
25
00:00:54,660 --> 00:00:56,260
We will repeatedly update the
我们会如此反复更新
26
00:00:56,330 --> 00:00:57,670
parameters theta J as follows
参数 θj
27
00:00:58,270 --> 00:01:00,030
for J equals 1,2 up
其中 j=0, 1, 2...n
28
00:01:00,400 --> 00:01:02,110
through n. Let me
让我
29
00:01:02,530 --> 00:01:03,960
take this and just write
照这个把
30
00:01:04,240 --> 00:01:06,580
the case for theta zero separately.
j=0 即 θ0 的情况单独写出来
31
00:01:07,210 --> 00:01:08,400
So, you know, I'm just gonna
我只是把
32
00:01:08,720 --> 00:01:09,900
write the update for theta
θ0 的更新
33
00:01:10,160 --> 00:01:12,500
zero separately, then for
分离出来
34
00:01:12,680 --> 00:01:14,380
the update for the parameters
剩下的这些参数θ1, θ2 到θn的更新
35
00:01:14,780 --> 00:01:17,090
1, 2, 3, and so on up
作为另一部分
36
00:01:17,370 --> 00:01:19,760
to n. So, I haven't changed anything yet, right?
所以 这样做其实没有什么变化 对吧?
37
00:01:19,970 --> 00:01:21,070
This is just writing the update
这只是把 θ0 的更新
38
00:01:21,300 --> 00:01:23,300
for theta zero separately from the
这只是把 θ0 的更新
39
00:01:23,550 --> 00:01:25,240
updates from theta 1, theta
和 θ1 θ2 到 θn 的更新分离开来
40
00:01:25,510 --> 00:01:26,980
2, theta 3, up to theta n. And
和 θ1 θ2 到 θn 的更新分离开来
41
00:01:27,040 --> 00:01:27,900
the reason I want to do this
我这样做的原因是
42
00:01:28,230 --> 00:01:29,320
is you may remember
你可能还记得
43
00:01:29,880 --> 00:01:31,260
that for our regularized linear regression,
对于正则化的线性回归
44
00:01:32,620 --> 00:01:33,970
we penalize the parameters theta
我们惩罚参数θ1
45
00:01:34,440 --> 00:01:35,540
1, theta 2, and so
θ2...一直到
46
00:01:35,860 --> 00:01:38,360
on up to theta n, but we don't penalize theta zero.
θn 但是我们不惩罚θ0
47
00:01:38,820 --> 00:01:40,250
So when we modify this
所以 当我们修改这个
48
00:01:40,410 --> 00:01:42,400
algorithm for regularized
正则化线性回归的算法时
49
00:01:42,750 --> 00:01:44,050
linear regression, we're going to
我们将对
50
00:01:44,710 --> 00:01:46,870
end up treating theta zero slightly differently.
θ0 的方式将有所不同
51
00:01:48,560 --> 00:01:50,360
Concretely, if we
具体地说 如果我们
52
00:01:50,500 --> 00:01:52,170
want to take this algorithm and
要对这个算法进行
53
00:01:52,300 --> 00:01:53,780
modify it to use the
修改 并用它
54
00:01:53,870 --> 00:01:55,630
regularized objective, all we
求解正则化的目标函数 我们
55
00:01:55,740 --> 00:01:57,170
need to do is take this
需要做的是
56
00:01:57,350 --> 00:02:00,010
term at the bottom and modify as follows.
把下边的这一项做如下的修改
57
00:02:00,460 --> 00:02:01,860
We're gonna take this term and add
我们要在这一项上添加一项:
58
00:02:02,670 --> 00:02:05,310
minus londer M,
λ 除以 m
59
00:02:06,330 --> 00:02:08,920
times theta J. And
再乘以 θj
60
00:02:09,100 --> 00:02:10,850
if you implement this, then you
如果这样做的话 那么你就有了
61
00:02:11,000 --> 00:02:13,230
have gradient descent for trying
用于最小化
62
00:02:13,960 --> 00:02:15,920
to minimize the regularized cost
正则化代价函数 J(θ)
63
00:02:16,160 --> 00:02:18,200
function J of F theta, and concretely,
的梯度下降算法
64
00:02:19,520 --> 00:02:20,570
I'm not gonna do the
我不打算用
65
00:02:20,680 --> 00:02:22,260
calculus to prove it, but
微积分来证明这一点
66
00:02:22,390 --> 00:02:23,480
concretely if you look
但如果你看这一项
67
00:02:23,690 --> 00:02:26,580
at this term, this term that's written is square brackets.
方括号里的这一项
68
00:02:27,730 --> 00:02:28,930
If you know calculus, it's possible
如果你知道微积分
69
00:02:29,380 --> 00:02:31,150
to prove that that term is
应该不难证明它是
70
00:02:31,370 --> 00:02:33,150
the partial derivative, with respect of
J(θ) 对 θj 的偏导数
71
00:02:33,980 --> 00:02:35,400
J of theta, using the new
这里的 J(θ) 是用的新定义的形式
72
00:02:35,660 --> 00:02:37,520
definition of J of theta
它的定义中
73
00:02:38,140 --> 00:02:39,330
with the regularization term.
包含正则化项
74
00:02:39,510 --> 00:02:42,490
And somebody on this
而另一项
75
00:02:42,760 --> 00:02:43,960
term up on top,
上面的这一项
76
00:02:44,750 --> 00:02:45,570
which I guess I am
我用青色的方框
77
00:02:45,680 --> 00:02:47,240
drawing the salient box
圈出来的这一项
78
00:02:48,000 --> 00:02:49,270
that's still the partial derivative
这也一个是偏导数
79
00:02:49,940 --> 00:02:52,700
respect of theta zero for J of theta.
是 J(θ)对 θ0 的偏导数
80
00:02:53,680 --> 00:02:54,900
If you look at the update for
如果你仔细看 θj 的更新
81
00:02:55,600 --> 00:02:56,710
theta J, it's possible to
你会发现一些
82
00:02:56,910 --> 00:02:59,190
show's something pretty interesting, concretely
有趣的东西 具体来说
83
00:02:59,860 --> 00:03:01,100
theta J gets updated as
θj 的每次更新
84
00:03:01,280 --> 00:03:03,400
theta J, minus alpha times,
都是 θj 自己减去 α 乘以原来的无正则项
85
00:03:04,090 --> 00:03:05,010
and then you have this other term
然后还有这另外的一项
86
00:03:05,380 --> 00:03:06,730
here that depends on theta J
这一项的大小也取决于 θj
87
00:03:06,910 --> 00:03:08,310
. So if you
所以 如果你
88
00:03:08,420 --> 00:03:09,410
group all the terms together
把所有这些
89
00:03:10,030 --> 00:03:11,690
that depending on theta J. We
取决于 θj 的合在一起的话
90
00:03:11,780 --> 00:03:13,190
can show that this update can
可以证明 这个更新
91
00:03:13,670 --> 00:03:15,100
be written equivalently as
可以等价地写为
92
00:03:15,200 --> 00:03:16,160
follows and all I did
如下的形式
93
00:03:16,470 --> 00:03:17,620
was have, you know, theta J
具体来讲 上面的 θj
94
00:03:18,310 --> 00:03:20,100
here is theta J times
对应下面的 θj 乘以括号里的1
95
00:03:20,450 --> 00:03:21,950
1 and this term is
而这一项是
96
00:03:22,910 --> 00:03:24,830
londer over M. There's also an alpha
λ 除以 m 还有一个α
97
00:03:25,140 --> 00:03:25,990
here, so you end up
把它们合在一起 所以你最终得到
98
00:03:26,180 --> 00:03:27,650
with alpha londer over
α 乘以 λ 再除以 m
99
00:03:27,970 --> 00:03:31,450
m, multiply them to
然后合在一起 乘以 θj
100
00:03:31,820 --> 00:03:33,660
theta J and this term here, one minus
而这一项
101
00:03:34,230 --> 00:03:36,300
alpha times londer M, is
1 减去 α 乘以 λ 除以 m
102
00:03:36,600 --> 00:03:39,470
a pretty interesting term, it has a pretty interesting effect.
这一项很有意思
103
00:03:42,310 --> 00:03:43,710
Concretely, this term one
具体来说 这一项
104
00:03:43,890 --> 00:03:45,320
minus alpha times londer over
1 减去 α 乘以 λ 除以 m
105
00:03:45,730 --> 00:03:46,780
M, is going to be
这一项的值
106
00:03:46,870 --> 00:03:48,740
a number that's, you know, usually a number
通常是一个具体的实数
107
00:03:48,800 --> 00:03:50,390
that's a loop and less than 1,
而且小于1
108
00:03:50,610 --> 00:03:51,670
right? Because of
对吧?由于
109
00:03:51,920 --> 00:03:53,580
alpha times londer over M is
α 乘以 λ 除以 m
110
00:03:54,070 --> 00:03:55,920
going to be positive and usually, if you're learning rate is small and M is large.
通常情况下是正的 如果你的学习速率小 而 m 很大的话
111
00:03:58,650 --> 00:03:58,860
That's usually pretty small.
(1 - αλ/m) 这一项通常是很小的
112
00:03:59,650 --> 00:04:00,680
So this term here, it's going
所以这里的一项
113
00:04:00,740 --> 00:04:03,060
to be a number, it's usually, you know, a little bit less than one.
一般来说将是一个比1小一点点的值
114
00:04:03,340 --> 00:04:04,150
So think of it as
所以我们可以把它想成
115
00:04:04,330 --> 00:04:05,860
a number like 0.99, let's say
一个像0.99一样的数字
116
00:04:07,380 --> 00:04:08,800
and so, the effect of our
所以
117
00:04:09,120 --> 00:04:10,550
updates of theta J is we're
对 θj 更新的结果
118
00:04:10,690 --> 00:04:11,950
going to say that theta J
我们可以看作是
119
00:04:12,410 --> 00:04:15,420
gets replaced by thetata J times 0.99.
被替换为 θj 的0.99倍
120
00:04:15,770 --> 00:04:17,500
Alright so theta J
也就是 θj
121
00:04:18,490 --> 00:04:20,940
times 0.99 has the effect of
乘以0.99
122
00:04:21,280 --> 00:04:23,560
shrinking theta J a little bit towards 0.
把 θj 向 0 压缩了一点点
123
00:04:23,670 --> 00:04:25,690
So this makes theta J a bit smaller.
所以这使得 θj 小了一点
124
00:04:26,220 --> 00:04:28,080
More formally, this you know, this
更正式地说
125
00:04:28,420 --> 00:04:29,750
square norm of theta J
θj 的平方范数
126
00:04:29,870 --> 00:04:31,580
is smaller and then
更小了
127
00:04:31,720 --> 00:04:33,430
after that the second
另外 这一项后边的第二项
128
00:04:33,910 --> 00:04:35,400
term here, that's actually
这实际上
129
00:04:35,980 --> 00:04:37,930
exactly the same as the
与我们原来的
130
00:04:38,050 --> 00:04:40,270
original gradient descent updated that we had.
梯度下降更新完全一样
131
00:04:40,750 --> 00:04:42,840
Before we added all this regularization stuff.
跟我们加入了正则项之前一样
132
00:04:44,270 --> 00:04:46,920
So, hopefully this gradient
好的 现在你应该对这个
133
00:04:47,380 --> 00:04:48,630
descent, hopefully this update makes
梯度下降的更新没有疑问了
134
00:04:48,880 --> 00:04:51,350
sense, when we're using regularized linear
当我们使用正则化线性回归时
135
00:04:51,550 --> 00:04:52,920
regression what we're doing is on
我们需要做的就是
136
00:04:53,320 --> 00:04:55,210
every regularization were multiplying data
在每一个被正规化的参数 θj 上
137
00:04:55,420 --> 00:04:56,310
J by a number that
乘以了一个
138
00:04:56,400 --> 00:04:57,300
is a little bit less than one, so
比1小一点点的数字
139
00:04:57,400 --> 00:04:58,900
we're shrinking the parameter a
也就是把参数压缩了一点
140
00:04:59,230 --> 00:05:00,340
little bit, and then we're
然后
141
00:05:00,500 --> 00:05:03,000
performing a, you know, similar update as before.
我们执行跟以前一样的更新
142
00:05:04,170 --> 00:05:05,460
Of course that's just the
当然 这仅仅是
143
00:05:05,610 --> 00:05:08,310
intuition behind what this particular update is doing.
从直观上认识 这个更新在做什么
144
00:05:08,910 --> 00:05:10,130
Mathematically, what it's doing
从数学上讲
145
00:05:10,580 --> 00:05:12,950
is exactly gradient descent on
它就是带有正则化项的 J(θ)
146
00:05:13,130 --> 00:05:14,330
the cost function J of theta
的梯度下降算法
147
00:05:15,150 --> 00:05:16,020
that we defined on the previous
我们在之前的幻灯片
148
00:05:16,480 --> 00:05:18,820
slide that uses the regularization term.
给出了定义
149
00:05:19,780 --> 00:05:21,210
Gradient descent was just
梯度下降只是
150
00:05:21,470 --> 00:05:23,050
one our two algorithms for
我们拟合线性回归模型的两种算法
151
00:05:24,470 --> 00:05:25,530
fitting a linear regression model.
的其中一个
152
00:05:26,630 --> 00:05:28,090
The second algorithm was the
第二种算法是
153
00:05:28,160 --> 00:05:29,130
one based on the normal
使用正规方程
154
00:05:29,680 --> 00:05:31,650
equation where, what we
我们的做法
155
00:05:31,740 --> 00:05:32,980
did was we created the
是建立这个
156
00:05:33,060 --> 00:05:34,770
design matrix "x" where each
设计矩阵 X 其中每一行
157
00:05:35,080 --> 00:05:37,830
row corresponded to a separate training example.
对应于一个单独的训练样本
158
00:05:38,520 --> 00:05:39,790
And we created a vector
然后创建了一个向量 y
159
00:05:40,170 --> 00:05:41,780
Y, so this is
向量 y 是一个
160
00:05:41,940 --> 00:05:43,320
a vector that is an
m 维的向量
161
00:05:43,590 --> 00:05:45,520
M dimensional vector and that
m 维的向量
162
00:05:46,010 --> 00:05:47,750
contain the labels from a training set.
包含了所有训练集里的标签
163
00:05:48,470 --> 00:05:49,600
So whereas X is an
所以 X 是一个
164
00:05:49,830 --> 00:05:52,660
M by N plus 1 dimensional matrix.
m × (n+1) 维矩阵
165
00:05:53,590 --> 00:05:55,220
Y is an M dimensional
y 是一个 m 维向量
166
00:05:55,780 --> 00:05:57,550
vector and in order
y 是一个 m 维向量
167
00:05:58,030 --> 00:05:59,200
to minimize the cost
为了最小化代价函数 J
168
00:05:59,470 --> 00:06:00,940
function change we found
我们发现
169
00:06:01,470 --> 00:06:03,000
that of one way
一个办法就是
170
00:06:03,230 --> 00:06:04,440
to do is to set
一个办法就是
171
00:06:04,670 --> 00:06:06,790
theta to be equal to this.
让 θ 等于这个式子
172
00:06:07,540 --> 00:06:09,040
We have X transpose X,
即 X 的转置乘以 X 再对结果取逆
173
00:06:10,860 --> 00:06:12,770
inverse X transpose Y.
再乘以 X 的转置乘以Y
174
00:06:13,020 --> 00:06:13,920
I am leaving room here, to fill
我在这里留点空间
175
00:06:14,120 --> 00:06:17,160
in stuff of course. And what this
等下再填满
176
00:06:17,650 --> 00:06:18,820
value for theta does, is
这个 θ 的值
177
00:06:19,180 --> 00:06:20,980
this minimizes the cost
其实就是最小化
178
00:06:21,250 --> 00:06:22,710
function J of theta when
代价函数 J(θ) 的θ值
179
00:06:22,840 --> 00:06:26,280
we were not using regularization. Now
这时的代价函数J(θ)没有正则项
180
00:06:26,460 --> 00:06:28,580
that we are using regularization, if
现在如果我们用了是正则化
181
00:06:28,780 --> 00:06:30,290
you were to derive what the
我们想要得到最小值
182
00:06:30,520 --> 00:06:31,820
minimum is, and just to
我们想要得到最小值
183
00:06:31,910 --> 00:06:32,760
give you a sense of how to
我们来看看应该怎么得到
184
00:06:32,980 --> 00:06:34,110
derive the minimum, the way
我们来看看应该怎么得到
185
00:06:34,220 --> 00:06:35,220
you derive it is you know,
推导的方法是
186
00:06:35,930 --> 00:06:37,910
take partial derivatives in respect
取 J 关于各个参数的偏导数
187
00:06:38,340 --> 00:06:40,600
to each parameter, set this
并令它们
188
00:06:40,830 --> 00:06:41,910
to zero, and then do
等于0 然后做些
189
00:06:42,060 --> 00:06:42,920
a bunch of math, and you can
数学推导 你可以
190
00:06:43,100 --> 00:06:45,060
then show that is a formula
得到这样的一个式子
191
00:06:45,550 --> 00:06:47,640
like this that minimizes the cost function.
它使得代价函数最小
192
00:06:48,590 --> 00:06:52,130
And concretely, if you
具体的说 如果你
193
00:06:52,240 --> 00:06:54,080
are using regularization then this
使用正则化
194
00:06:54,250 --> 00:06:56,320
formula changes as follows. Inside this
那么公式要做如下改变
195
00:06:56,480 --> 00:06:59,120
parenthesis, you end up with a matrix like this.
括号里结尾添这样一个矩阵
196
00:06:59,460 --> 00:07:00,940
Zero, one, one, one
0 1 1 1 等等
197
00:07:01,800 --> 00:07:03,520
and so on, one until the bottom.
直到最后一行
198
00:07:04,510 --> 00:07:05,510
So this thing over here is
所以这个东西在这里是
199
00:07:05,630 --> 00:07:07,810
a matrix, who's upper leftmost entry is zero.
一个矩阵 它的左上角的元素是0
200
00:07:08,560 --> 00:07:10,080
There's ones on the diagonals and
其余对角线元素都是1