3030from xarray .core .merge import merge_attrs , merge_coordinates_without_align
3131from xarray .core .options import OPTIONS , _get_keep_attrs
3232from xarray .core .pycompat import is_duck_dask_array
33- from xarray .core .types import T_DataArray
33+ from xarray .core .types import Dims , T_DataArray
3434from xarray .core .utils import is_dict_like , is_scalar
3535from xarray .core .variable import Variable
3636
@@ -1219,7 +1219,7 @@ def apply_ufunc(
12191219
12201220
12211221def cov (
1222- da_a : T_DataArray , da_b : T_DataArray , dim : Hashable | None = None , ddof : int = 1
1222+ da_a : T_DataArray , da_b : T_DataArray , dim : Dims = None , ddof : int = 1
12231223) -> T_DataArray :
12241224 """
12251225 Compute covariance between two DataArray objects along a shared dimension.
@@ -1230,7 +1230,7 @@ def cov(
12301230 Array to compute.
12311231 da_b : DataArray
12321232 Array to compute.
1233- dim : Hashable , optional
1233+ dim : str, iterable of hashable, "..." or None , optional
12341234 The dimension along which the covariance will be computed
12351235 ddof : int, default: 1
12361236 If ddof=1, covariance is normalized by N-1, giving an unbiased estimate,
@@ -1300,9 +1300,7 @@ def cov(
13001300 return _cov_corr (da_a , da_b , dim = dim , ddof = ddof , method = "cov" )
13011301
13021302
1303- def corr (
1304- da_a : T_DataArray , da_b : T_DataArray , dim : Hashable | None = None
1305- ) -> T_DataArray :
1303+ def corr (da_a : T_DataArray , da_b : T_DataArray , dim : Dims = None ) -> T_DataArray :
13061304 """
13071305 Compute the Pearson correlation coefficient between
13081306 two DataArray objects along a shared dimension.
@@ -1313,7 +1311,7 @@ def corr(
13131311 Array to compute.
13141312 da_b : DataArray
13151313 Array to compute.
1316- dim : Hashable , optional
1314+ dim : str, iterable of hashable, "..." or None , optional
13171315 The dimension along which the correlation will be computed
13181316
13191317 Returns
@@ -1383,15 +1381,14 @@ def corr(
13831381def _cov_corr (
13841382 da_a : T_DataArray ,
13851383 da_b : T_DataArray ,
1386- dim : Hashable | None = None ,
1384+ dim : Dims = None ,
13871385 ddof : int = 0 ,
13881386 method : Literal ["cov" , "corr" , None ] = None ,
13891387) -> T_DataArray :
13901388 """
13911389 Internal method for xr.cov() and xr.corr() so only have to
13921390 sanitize the input arrays once and we don't repeat code.
13931391 """
1394- dim = None if dim is None else (dim ,)
13951392 # 1. Broadcast the two arrays
13961393 da_a , da_b = align (da_a , da_b , join = "inner" , copy = False )
13971394
@@ -1633,7 +1630,7 @@ def cross(
16331630
16341631def dot (
16351632 * arrays ,
1636- dims : str | Iterable [ Hashable ] | ellipsis | None = None ,
1633+ dims : Dims = None ,
16371634 ** kwargs : Any ,
16381635):
16391636 """Generalized dot product for xarray objects. Like np.einsum, but
@@ -1643,7 +1640,7 @@ def dot(
16431640 ----------
16441641 *arrays : DataArray or Variable
16451642 Arrays to compute.
1646- dims : ..., str or tuple of str , optional
1643+ dims : str, iterable of hashable, "..." or None , optional
16471644 Which dimensions to sum over. Ellipsis ('...') sums over all dimensions.
16481645 If not specified, then all the common dimensions are summed over.
16491646 **kwargs : dict
0 commit comments