This repository contains the implementation of Self-Supervised Multi-Task Procedure Learning from Instructional Videos.
- Python 3.x
- PyTorch 1.x.x
- sklearn
- matplotlib
- skimage
- scipy
-
Please download and extract the annotations and video links of CrossTask to
./data/CrossTask
via https://www.di.ens.fr/~dzhukov/crosstask/crosstask_release.zip -
To crawl videos in CrossTask from YouTube, please run:
python ./download_youtube/download_youtube_CrossTask.py
- To extract and subsample video frame feature, please run:
python ./extract_feature/extract_img_frame_CrossTask.py
python ./extract_feature/extract_feature_cats_CrossTask_subsample.py
- We use the original training/testing split from CrossTask dataset
-
Please download and extract the annotations and video links of ProceL to
./data/ProceL
via https://drive.google.com/file/d/1b8PoZlYeNMP3PieJ3_80KkeibaCmmljS/view?usp=sharing -
To crawl videos in ProceL from YouTube, please run:
python ./download_youtube/download_youtube_ProceL.py
- Please run the following preprocessing script to gather annotation file in ProceL:
python ./preprocess/rename_gather_mat_file_ProceL.py
- To extract and subsample video frame feature, please run:
python ./extract_feature/extract_img_frame_ProceL.py
python ./extract_feature/extract_feature_cats_ProceL.py
python ./extract_feature/extract_feature_cats_ProceL_subsample.py
- Information about the training split of ProceL is in
./data_partition/ProceL_train_partition.csv
- To train the task-specific model on CrossTask dataset, please run:
chmod +x ./chain_experiment_script/CrossTask/CrossTask_same_cat_ss.sh
./chain_experiment_script/CrossTask/CrossTask_same_cat_ss.sh
- To train the multi-task model on CrossTask dataset, please run:
chmod +x ./chain_experiment_script/CrossTask/CrossTask_all_cat_experiments.sh
./chain_experiment_script/CrossTask/CrossTask_all_cat_experiments.sh
- To train the multi-task model on ProceL dataset, please run:
chmod +x ./chain_experiment_script/ProceL/all_cat_experiments.sh
./chain_experiment_script/ProceL/all_cat_experiments.sh
For ease of reproducing the results, we provided the pretrained models for:
Dataset | Setting | Model |
---|---|---|
CrossTask | K=15 (Teacher model) | download |
CrossTask | K=15 (Student model) | download |
Procel | K=15 (Teacher model) | download |
Procel | K=15 (Student model) | download |
If this code is helpful for your research, we would appreciate if you cite the work:
@article{Elhamifar-MultiTaskProcedureLearning:ECCV20,
author = {E.~Elhamifar and D.~Huynh},
title = {Self-Supervised Multi-Task Procedure Learning from Instructional Videos},
journal = {European Conference on Computer Vision},
year = {2020}}