This is the unofficial code repository for Machine Learning with TensorFlow with R.
This repository may contain different experiment R code.
이 저장소는 R 텐서플로기반 텐서플로 모형작성 연습을 하기 위한 곳입니다. R만의 장점을 가질수 있는 부분이 있음을 개인적으로 코드작성을 통해 알아기기 위한 목적으로 작성되었으며, 책의 코드에서 부분적으로 개선되거나 실험된 코드/메모가 포함될 수 있음을 알려드립니다.(예: CNN model view )
- 예제 코드 완성
- R Reference Class 기반 코드 재활용성 추구
- GAN 모듈 추가
- TensorFlow (> 1.0)
- Python (> 3.4)
- tensorflow
- reticulate
Chapter 2 - TensorFlow Basics
- Concept 1: Defining tensors
- Concept 2: Evaluating ops
- Concept 3: Interactive session
- Concept 4: Session loggings
- Concept 5: Variables
- Concept 6: Saving variables
- Concept 7: Loading variables
- Concept 8: TensorBoard
Chapter 3 - Regression
- Concept 1: Linear regression
- Concept 2: Polynomial regression
- Concept 3: Regularization
Chapter 4 - Classification
- Concept 1: Linear regression for classification
- Concept 2: Logistic regression
- Concept 3: 2D Logistic regression
- Concept 4: Softmax classification
Chapter 5 - Clustering (working)
- Concept 1: Clustering
- Concept 2: Segmentation
- Concept 3: Self-organizing map
Chapter 6 - Hidden markov models
- Concept 1: Forward algorithm
- Concept 2: Viterbi decode
Chapter 7 - Autoencoders (working)
- Concept 1: Autoencoder
- Concept 2: Applying an autoencoder to images
- Concept 3: Denoising autoencoder
Chapter 8 - Reinforcement learning (working)
- Concept 1: Reinforcement learning
Chapter 9 - Convolutional Neural Networks
- Concept 1: Using CIFAR-10 dataset
- Concept 2: Convolutions
- Concept 3: Convolutional neural network
- Concept 4: Convolutional neural network model debugging(2), Newly added
Chapter 10 - Recurrent Neural Network(working)
- Concept 1: Loading timeseries data
- Concept 2: Recurrent neural networks
- Concept 3: Applying RNN to real-world data for timeseries prediction