학습 정확도 추이
library(ggplot2)
library(data.table)
load("accuracy_list.RData")
accuracy_dt <- rbindlist(accuracy_list)
ggplot(accuracy_dt, aes(epoch, accu)) + geom_point() +
geom_line(group=1) + ylab("accuracy") + geom_smooth()
## `geom_smooth()` using method = 'gam'
학습된 가중치 시각화
source("Concept01_cifar.R")
names_data_labels <- read_data('./cifar-10-batches-py')
## [1] "airplane" "automobile" "bird" "cat" "deer"
## [6] "dog" "frog" "horse" "ship" "truck"
## 50000 3072 , 50000
커널 매트릭스 출력
library(tensorflow)
source("Concept03_cnn.R")
source("Concept02_convolution.R")
sess <- tf$InteractiveSession()
saver$restore(sess, "saver/model_1000.chkp-1")
w1_val <- sess$run(W1)
print('weights1:')
## [1] "weights1:"
show_weights(w1_val)
img_idx <- 222
names_data_labels$names[names_data_labels$labels[img_idx] + 1]
## [1] "ship"
raw_data <- names_data_labels$data[img_idx,]
raw_img <- t(array(raw_data, dim = c(24,24)))
par(mar = rep(1, 4))
image(raw_img, axes = F, col = grey(seq(0, 1, length = 256)))
콘볼루션 적용 후 출력 이미지
conv_res <- sess$run(conv_out2, feed_dict=dict(x=matrix(names_data_labels$data[img_idx,], ncol=576)))
print(dim(conv_res))
## [1] 1 12 12 64
show_conv_results(conv_res)
sess$close()