-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
dcd_dwc2.c
1016 lines (819 loc) · 33.8 KB
/
dcd_dwc2.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* The MIT License (MIT)
*
* Copyright (c) 2019 William D. Jones
* Copyright (c) 2019 Ha Thach (tinyusb.org)
* Copyright (c) 2020 Jan Duempelmann
* Copyright (c) 2020 Reinhard Panhuber
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* This file is part of the TinyUSB stack.
*/
#include "tusb_option.h"
#if CFG_TUD_ENABLED && defined(TUP_USBIP_DWC2)
// Debug level for DWC2
#define DWC2_DEBUG 2
#include "device/dcd.h"
#include "dwc2_common.h"
//--------------------------------------------------------------------+
// MACRO TYPEDEF CONSTANT ENUM
//--------------------------------------------------------------------+
static CFG_TUD_MEM_SECTION TU_ATTR_ALIGNED(4) uint32_t _setup_packet[2];
typedef struct {
uint8_t* buffer;
tu_fifo_t* ff;
uint16_t total_len;
uint16_t max_size;
uint8_t interval;
} xfer_ctl_t;
static xfer_ctl_t xfer_status[DWC2_EP_MAX][2];
#define XFER_CTL_BASE(_ep, _dir) (&xfer_status[_ep][_dir])
// EP0 transfers are limited to 1 packet - larger sizes has to be split
static uint16_t ep0_pending[2]; // Index determines direction as tusb_dir_t type
static uint16_t _dfifo_top; // top free location in DFIFO in words
// Number of IN endpoints active
static uint8_t _allocated_ep_in_count;
// SOF enabling flag - required for SOF to not get disabled in ISR when SOF was enabled by
static bool _sof_en;
//--------------------------------------------------------------------
// DMA
//--------------------------------------------------------------------
TU_ATTR_ALWAYS_INLINE static inline bool dma_device_enabled(const dwc2_regs_t* dwc2) {
(void) dwc2;
// Internal DMA only
return CFG_TUD_DWC2_DMA && dwc2->ghwcfg2_bm.arch == GHWCFG2_ARCH_INTERNAL_DMA;
}
static void dma_setup_prepare(uint8_t rhport) {
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
if (dwc2->gsnpsid >= DWC2_CORE_REV_3_00a) {
if(dwc2->epout[0].doepctl & DOEPCTL_EPENA) {
return;
}
}
// Receive only 1 packet
dwc2->epout[0].doeptsiz = (1 << DOEPTSIZ_STUPCNT_Pos) | (1 << DOEPTSIZ_PKTCNT_Pos) | (8 << DOEPTSIZ_XFRSIZ_Pos);
dwc2->epout[0].doepdma = (uintptr_t)_setup_packet;
dwc2->epout[0].doepctl |= DOEPCTL_EPENA | DOEPCTL_USBAEP;
}
//--------------------------------------------------------------------+
// Data FIFO
//--------------------------------------------------------------------+
/* Device Data FIFO scheme
The FIFO is split up into
- EPInfo: for storing DMA metadata, only required when use DMA. Maximum size is called
EP_LOC_CNT = ep_fifo_size - ghwcfg3.dfifo_depth. For value less than EP_LOC_CNT, gdfifocfg must be configured before
gahbcfg.dmaen is set
- Buffer mode: 1 word per endpoint direction
- Scatter/Gather DMA: 4 words per endpoint direction
- TX FIFO: one fifo for each IN endpoint. Size is dynamic depending on packet size, starting from top with EP0 IN.
- Shared RX FIFO: a shared fifo for all OUT endpoints. Typically, can hold up to 2 packets of the largest EP size.
We allocated TX FIFO from top to bottom (using top pointer), this to allow the RX FIFO to grow dynamically which is
possible since the free space is located between the RX and TX FIFOs.
---------------- ep_fifo_size
| DxEPIDMAn |
|-------------|-- gdfifocfg.EPINFOBASE (max is ghwcfg3.dfifo_depth)
| IN FIFO 0 | control EP
|-------------|
| IN FIFO 1 |
|-------------|
| . . . . |
|-------------|
| IN FIFO n |
|-------------|
| FREE |
|-------------|-- GRXFSIZ (expandable)
| OUT FIFO |
| ( Shared ) |
--------------- 0
According to "FIFO RAM allocation" section in RM, FIFO RAM are allocated as follows (each word 32-bits):
- Each EP IN needs at least max packet size
- All EP OUT shared a unique OUT FIFO which uses (for Slave or Buffer DMA, Scatt/Gather DMA use different formula):
- 13 for setup packets + control words (up to 3 setup packets).
- 1 for global NAK (not required/used here).
- Largest-EPsize/4 + 1. ( FS: 64 bytes, HS: 512 bytes). Recommended is "2 x (Largest-EPsize/4 + 1)"
- 2 for each used OUT endpoint
Therefore GRXFSIZ = 13 + 1 + 2 x (Largest-EPsize/4 + 1) + 2 x EPOUTnum
*/
TU_ATTR_ALWAYS_INLINE static inline uint16_t calc_device_grxfsiz(uint16_t largest_ep_size, uint8_t ep_count) {
return 13 + 1 + 2 * ((largest_ep_size / 4) + 1) + 2 * ep_count;
}
static bool dfifo_alloc(uint8_t rhport, uint8_t ep_addr, uint16_t packet_size) {
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
const dwc2_controller_t* dwc2_controller = &_dwc2_controller[rhport];
uint8_t const ep_count = dwc2_controller->ep_count;
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
TU_ASSERT(epnum < ep_count);
uint16_t fifo_size = tu_div_ceil(packet_size, 4);
if (dir == TUSB_DIR_OUT) {
// Calculate required size of RX FIFO
uint16_t const new_sz = calc_device_grxfsiz(4 * fifo_size, ep_count);
// If size_rx needs to be extended check if there is enough free space
if (dwc2->grxfsiz < new_sz) {
TU_ASSERT(new_sz <= _dfifo_top);
dwc2->grxfsiz = new_sz; // Enlarge RX FIFO
}
} else {
// Check IN endpoints concurrently active limit
if(_dwc2_controller->ep_in_count) {
TU_ASSERT(_allocated_ep_in_count < _dwc2_controller->ep_in_count);
_allocated_ep_in_count++;
}
// If The TXFELVL is configured as half empty, the fifo must be twice the max_size.
if ((dwc2->gahbcfg & GAHBCFG_TX_FIFO_EPMTY_LVL) == 0) {
fifo_size *= 2;
}
// Check if free space is available
TU_ASSERT(_dfifo_top >= fifo_size + dwc2->grxfsiz);
_dfifo_top -= fifo_size;
TU_LOG(DWC2_DEBUG, " TX FIFO %u: allocated %u words at offset %u\r\n", epnum, fifo_size, _dfifo_top);
// Both TXFD and TXSA are in unit of 32-bit words.
if (epnum == 0) {
dwc2->dieptxf0 = (fifo_size << DIEPTXF0_TX0FD_Pos) | _dfifo_top;
} else {
// DIEPTXF starts at FIFO #1.
dwc2->dieptxf[epnum - 1] = (fifo_size << DIEPTXF_INEPTXFD_Pos) | _dfifo_top;
}
}
return true;
}
static void dfifo_device_init(uint8_t rhport) {
const dwc2_controller_t* dwc2_controller = &_dwc2_controller[rhport];
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
dwc2->grxfsiz = calc_device_grxfsiz(CFG_TUD_ENDPOINT0_SIZE, dwc2_controller->ep_count);
// Scatter/Gather DMA mode is not yet supported. Buffer DMA only need 1 words per endpoint direction
const bool is_dma = dma_device_enabled(dwc2);
_dfifo_top = dwc2_controller->ep_fifo_size/4;
if (is_dma) {
_dfifo_top -= 2 * dwc2_controller->ep_count;
}
dwc2->gdfifocfg = (_dfifo_top << GDFIFOCFG_EPINFOBASE_SHIFT) | _dfifo_top;
// Allocate FIFO for EP0 IN
dfifo_alloc(rhport, 0x80, CFG_TUD_ENDPOINT0_SIZE);
}
//--------------------------------------------------------------------
// Endpoint
//--------------------------------------------------------------------
static void edpt_activate(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc) {
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
uint8_t const epnum = tu_edpt_number(p_endpoint_desc->bEndpointAddress);
uint8_t const dir = tu_edpt_dir(p_endpoint_desc->bEndpointAddress);
xfer_ctl_t* xfer = XFER_CTL_BASE(epnum, dir);
xfer->max_size = tu_edpt_packet_size(p_endpoint_desc);
xfer->interval = p_endpoint_desc->bInterval;
// USBAEP, EPTYP, SD0PID_SEVNFRM, MPSIZ are the same for IN and OUT endpoints.
uint32_t epctl = (1 << DOEPCTL_USBAEP_Pos) |
(p_endpoint_desc->bmAttributes.xfer << DOEPCTL_EPTYP_Pos) |
(p_endpoint_desc->bmAttributes.xfer != TUSB_XFER_ISOCHRONOUS ? DOEPCTL_SD0PID_SEVNFRM : 0) |
(xfer->max_size << DOEPCTL_MPSIZ_Pos);
if (dir == TUSB_DIR_IN) {
epctl |= (epnum << DIEPCTL_TXFNUM_Pos);
}
dwc2_dep_t* dep = &dwc2->ep[1 - dir][epnum];
dep->ctl = epctl;
dwc2->daintmsk |= TU_BIT(epnum + DAINT_SHIFT(dir));
}
static void edpt_disable(uint8_t rhport, uint8_t ep_addr, bool stall) {
(void) rhport;
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
const uint8_t epnum = tu_edpt_number(ep_addr);
const uint8_t dir = tu_edpt_dir(ep_addr);
dwc2_dep_t* dep = &dwc2->ep[1 - dir][epnum];
if (dir == TUSB_DIR_IN) {
// Only disable currently enabled non-control endpoint
if ((epnum == 0) || !(dep->diepctl & DIEPCTL_EPENA)) {
dep->diepctl |= DIEPCTL_SNAK | (stall ? DIEPCTL_STALL : 0);
} else {
// Stop transmitting packets and NAK IN xfers.
dep->diepctl |= DIEPCTL_SNAK;
while ((dep->diepint & DIEPINT_INEPNE) == 0) {}
// Disable the endpoint.
dep->diepctl |= DIEPCTL_EPDIS | (stall ? DIEPCTL_STALL : 0);
while ((dep->diepint & DIEPINT_EPDISD_Msk) == 0) {}
dep->diepint = DIEPINT_EPDISD;
}
// Flush the FIFO, and wait until we have confirmed it cleared.
dfifo_flush_tx(dwc2, epnum);
} else {
// Only disable currently enabled non-control endpoint
if ((epnum == 0) || !(dep->doepctl & DOEPCTL_EPENA)) {
dep->doepctl |= stall ? DOEPCTL_STALL : 0;
} else {
// Asserting GONAK is required to STALL an OUT endpoint.
// Simpler to use polling here, we don't use the "B"OUTNAKEFF interrupt
// anyway, and it can't be cleared by user code. If this while loop never
// finishes, we have bigger problems than just the stack.
dwc2->dctl |= DCTL_SGONAK;
while ((dwc2->gintsts & GINTSTS_BOUTNAKEFF_Msk) == 0) {}
// Ditto here disable the endpoint.
dep->doepctl |= DOEPCTL_EPDIS | (stall ? DOEPCTL_STALL : 0);
while ((dep->doepint & DOEPINT_EPDISD_Msk) == 0) {}
dep->doepint = DOEPINT_EPDISD;
// Allow other OUT endpoints to keep receiving.
dwc2->dctl |= DCTL_CGONAK;
}
}
}
// Start of Bus Reset
static void bus_reset(uint8_t rhport) {
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
uint8_t const ep_count = _dwc2_controller[rhport].ep_count;
tu_memclr(xfer_status, sizeof(xfer_status));
_sof_en = false;
_allocated_ep_in_count = 1;
// 1. NAK for all OUT endpoints
for (uint8_t n = 0; n < ep_count; n++) {
dwc2->epout[n].doepctl |= DOEPCTL_SNAK;
}
// 2. Disable all IN endpoints
for (uint8_t n = 0; n < ep_count; n++) {
if (dwc2->epin[n].diepctl & DIEPCTL_EPENA) {
dwc2->epin[n].diepctl |= DIEPCTL_SNAK | DIEPCTL_EPDIS;
}
}
dfifo_flush_tx(dwc2, 0x10); // all tx fifo
dfifo_flush_rx(dwc2);
// 3. Set up interrupt mask for EP0
dwc2->daintmsk = TU_BIT(DAINTMSK_OEPM_Pos) | TU_BIT(DAINTMSK_IEPM_Pos);
dwc2->doepmsk = DOEPMSK_STUPM | DOEPMSK_XFRCM;
dwc2->diepmsk = DIEPMSK_TOM | DIEPMSK_XFRCM;
// 4. Set up DFIFO
dfifo_device_init(rhport);
// 5. Reset device address
dwc2->dcfg &= ~DCFG_DAD_Msk;
// Fixed both control EP0 size to 64 bytes
dwc2->epin[0].diepctl &= ~(0x03 << DIEPCTL_MPSIZ_Pos);
dwc2->epout[0].doepctl &= ~(0x03 << DOEPCTL_MPSIZ_Pos);
xfer_status[0][TUSB_DIR_OUT].max_size = 64;
xfer_status[0][TUSB_DIR_IN].max_size = 64;
if(dma_device_enabled(dwc2)) {
dma_setup_prepare(rhport);
} else {
dwc2->epout[0].doeptsiz |= (3 << DOEPTSIZ_STUPCNT_Pos);
}
dwc2->gintmsk |= GINTMSK_OEPINT | GINTMSK_IEPINT;
}
static void edpt_schedule_packets(uint8_t rhport, uint8_t const epnum, uint8_t const dir, uint16_t const num_packets,
uint16_t total_bytes) {
(void) rhport;
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
xfer_ctl_t* const xfer = XFER_CTL_BASE(epnum, dir);
// EP0 is limited to one packet each xfer
// We use multiple transaction of xfer->max_size length to get a whole transfer done
if (epnum == 0) {
total_bytes = tu_min16(ep0_pending[dir], xfer->max_size);
ep0_pending[dir] -= total_bytes;
}
// IN and OUT endpoint xfers are interrupt-driven, we just schedule them here.
const uint8_t is_epout = 1 - dir;
dwc2_dep_t* dep = &dwc2->ep[is_epout][epnum];
if (dir == TUSB_DIR_IN) {
// A full IN transfer (multiple packets, possibly) triggers XFRC.
dep->dieptsiz = (num_packets << DIEPTSIZ_PKTCNT_Pos) |
((total_bytes << DIEPTSIZ_XFRSIZ_Pos) & DIEPTSIZ_XFRSIZ_Msk);
if(dma_device_enabled(dwc2)) {
dep->diepdma = (uintptr_t)xfer->buffer;
// For ISO endpoint set correct odd/even bit for next frame.
if ((dep->diepctl & DIEPCTL_EPTYP) == DIEPCTL_EPTYP_0 && (XFER_CTL_BASE(epnum, dir))->interval == 1) {
// Take odd/even bit from frame counter.
uint32_t const odd_frame_now = (dwc2->dsts & (1u << DSTS_FNSOF_Pos));
dep->diepctl |= (odd_frame_now ? DIEPCTL_SD0PID_SEVNFRM_Msk : DIEPCTL_SODDFRM_Msk);
}
dep->diepctl |= DIEPCTL_EPENA | DIEPCTL_CNAK;
} else {
dep->diepctl |= DIEPCTL_EPENA | DIEPCTL_CNAK;
// For ISO endpoint set correct odd/even bit for next frame.
if ((dep->diepctl & DIEPCTL_EPTYP) == DIEPCTL_EPTYP_0 && (XFER_CTL_BASE(epnum, dir))->interval == 1) {
// Take odd/even bit from frame counter.
uint32_t const odd_frame_now = (dwc2->dsts & (1u << DSTS_FNSOF_Pos));
dep->diepctl |= (odd_frame_now ? DIEPCTL_SD0PID_SEVNFRM_Msk : DIEPCTL_SODDFRM_Msk);
}
// Enable fifo empty interrupt only if there are something to put in the fifo.
if (total_bytes != 0) {
dwc2->diepempmsk |= (1 << epnum);
}
}
} else {
// A full OUT transfer (multiple packets, possibly) triggers XFRC.
dep->doeptsiz &= ~(DOEPTSIZ_PKTCNT_Msk | DOEPTSIZ_XFRSIZ);
dep->doeptsiz |= (num_packets << DOEPTSIZ_PKTCNT_Pos) |
((total_bytes << DOEPTSIZ_XFRSIZ_Pos) & DOEPTSIZ_XFRSIZ_Msk);
if ((dep->doepctl & DOEPCTL_EPTYP) == DOEPCTL_EPTYP_0 &&
XFER_CTL_BASE(epnum, dir)->interval == 1) {
// Take odd/even bit from frame counter.
uint32_t const odd_frame_now = (dwc2->dsts & (1u << DSTS_FNSOF_Pos));
dep->doepctl |= (odd_frame_now ? DOEPCTL_SD0PID_SEVNFRM_Msk : DOEPCTL_SODDFRM_Msk);
}
if(dma_device_enabled(dwc2)) {
dep->doepdma = (uintptr_t)xfer->buffer;
}
dep->doepctl |= DOEPCTL_EPENA | DOEPCTL_CNAK;
}
}
//--------------------------------------------------------------------
// Controller API
//--------------------------------------------------------------------
bool dcd_init(uint8_t rhport, const tusb_rhport_init_t* rh_init) {
(void) rh_init;
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
// Core Initialization
const bool is_highspeed = dwc2_core_is_highspeed(dwc2, TUSB_ROLE_DEVICE);
TU_ASSERT(dwc2_core_init(rhport, is_highspeed));
if (dma_device_enabled(dwc2)) {
// DMA seems to be only settable after a core reset, and not possible to switch on-the-fly
dwc2->gahbcfg |= GAHBCFG_DMAEN | GAHBCFG_HBSTLEN_2;
} else {
dwc2->gintmsk |= GINTSTS_RXFLVL;
}
// Device Initialization
dcd_disconnect(rhport);
// Set device max speed
uint32_t dcfg = dwc2->dcfg & ~DCFG_DSPD_Msk;
if (is_highspeed) {
dcfg |= DCFG_DSPD_HS << DCFG_DSPD_Pos;
// XCVRDLY: transceiver delay between xcvr_sel and txvalid during device chirp is required
// when using with some PHYs such as USB334x (USB3341, USB3343, USB3346, USB3347)
if (dwc2->ghwcfg2_bm.hs_phy_type == GHWCFG2_HSPHY_ULPI) {
dcfg |= DCFG_XCVRDLY;
}
}else {
dcfg |= DCFG_DSPD_FS << DCFG_DSPD_Pos;
}
dwc2->dcfg = dcfg;
// Force device mode
dwc2->gusbcfg = (dwc2->gusbcfg & ~GUSBCFG_FHMOD) | GUSBCFG_FDMOD;
// Clear A override, force B Valid
dwc2->gotgctl = (dwc2->gotgctl & ~GOTGCTL_AVALOEN) | GOTGCTL_BVALOEN | GOTGCTL_BVALOVAL;
// If USB host misbehaves during status portion of control xfer (non zero-length packet), send STALL back and discard
dwc2->dcfg |= DCFG_NZLSOHSK;
// Enable required interrupts
dwc2->gintmsk |= GINTMSK_OTGINT | GINTMSK_USBSUSPM | GINTMSK_USBRST | GINTMSK_ENUMDNEM | GINTMSK_WUIM;
// TX FIFO empty level for interrupt is complete empty
uint32_t gahbcfg = dwc2->gahbcfg;
gahbcfg |= GAHBCFG_TX_FIFO_EPMTY_LVL;
gahbcfg |= GAHBCFG_GINT; // Enable global interrupt
dwc2->gahbcfg = gahbcfg;
dcd_connect(rhport);
return true;
}
void dcd_int_enable(uint8_t rhport) {
dwc2_dcd_int_enable(rhport);
}
void dcd_int_disable(uint8_t rhport) {
dwc2_dcd_int_disable(rhport);
}
void dcd_set_address(uint8_t rhport, uint8_t dev_addr) {
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
dwc2->dcfg = (dwc2->dcfg & ~DCFG_DAD_Msk) | (dev_addr << DCFG_DAD_Pos);
// Response with status after changing device address
dcd_edpt_xfer(rhport, tu_edpt_addr(0, TUSB_DIR_IN), NULL, 0);
}
void dcd_remote_wakeup(uint8_t rhport) {
(void) rhport;
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
// set remote wakeup
dwc2->dctl |= DCTL_RWUSIG;
// enable SOF to detect bus resume
dwc2->gintsts = GINTSTS_SOF;
dwc2->gintmsk |= GINTMSK_SOFM;
// Per specs: remote wakeup signal bit must be clear within 1-15ms
dwc2_remote_wakeup_delay();
dwc2->dctl &= ~DCTL_RWUSIG;
}
void dcd_connect(uint8_t rhport) {
(void) rhport;
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
#ifdef TUP_USBIP_DWC2_ESP32
usb_wrap_otg_conf_reg_t conf = USB_WRAP.otg_conf;
conf.pad_pull_override = 0;
conf.dp_pullup = 0;
conf.dp_pulldown = 0;
conf.dm_pullup = 0;
conf.dm_pulldown = 0;
USB_WRAP.otg_conf = conf;
#endif
dwc2->dctl &= ~DCTL_SDIS;
}
void dcd_disconnect(uint8_t rhport) {
(void) rhport;
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
#ifdef TUP_USBIP_DWC2_ESP32
usb_wrap_otg_conf_reg_t conf = USB_WRAP.otg_conf;
conf.pad_pull_override = 1;
conf.dp_pullup = 0;
conf.dp_pulldown = 1;
conf.dm_pullup = 0;
conf.dm_pulldown = 1;
USB_WRAP.otg_conf = conf;
#endif
dwc2->dctl |= DCTL_SDIS;
}
// Be advised: audio, video and possibly other iso-ep classes use dcd_sof_enable() to enable/disable its corresponding ISR on purpose!
void dcd_sof_enable(uint8_t rhport, bool en) {
(void) rhport;
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
_sof_en = en;
if (en) {
dwc2->gintsts = GINTSTS_SOF;
dwc2->gintmsk |= GINTMSK_SOFM;
} else {
dwc2->gintmsk &= ~GINTMSK_SOFM;
}
}
/*------------------------------------------------------------------*/
/* DCD Endpoint port
*------------------------------------------------------------------*/
bool dcd_edpt_open(uint8_t rhport, tusb_desc_endpoint_t const* desc_edpt) {
TU_ASSERT(dfifo_alloc(rhport, desc_edpt->bEndpointAddress, tu_edpt_packet_size(desc_edpt)));
edpt_activate(rhport, desc_edpt);
return true;
}
// Close all non-control endpoints, cancel all pending transfers if any.
void dcd_edpt_close_all(uint8_t rhport) {
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
uint8_t const ep_count = _dwc2_controller[rhport].ep_count;
_allocated_ep_in_count = 1;
// Disable non-control interrupt
dwc2->daintmsk = (1 << DAINTMSK_OEPM_Pos) | (1 << DAINTMSK_IEPM_Pos);
for (uint8_t n = 1; n < ep_count; n++) {
for (uint8_t d = 0; d < 2; d++) {
dwc2_dep_t* dep = &dwc2->ep[d][n];
if (dep->ctl & EPCTL_EPENA) {
dep->ctl |= EPCTL_SNAK | EPCTL_EPDIS;
}
xfer_status[n][1-d].max_size = 0;
}
}
dfifo_flush_tx(dwc2, 0x10); // all tx fifo
dfifo_flush_rx(dwc2);
dfifo_device_init(rhport); // re-init dfifo
}
bool dcd_edpt_iso_alloc(uint8_t rhport, uint8_t ep_addr, uint16_t largest_packet_size) {
TU_ASSERT(dfifo_alloc(rhport, ep_addr, largest_packet_size));
return true;
}
bool dcd_edpt_iso_activate(uint8_t rhport, tusb_desc_endpoint_t const * p_endpoint_desc) {
// Disable EP to clear potential incomplete transfers
edpt_disable(rhport, p_endpoint_desc->bEndpointAddress, false);
edpt_activate(rhport, p_endpoint_desc);
return true;
}
bool dcd_edpt_xfer(uint8_t rhport, uint8_t ep_addr, uint8_t* buffer, uint16_t total_bytes) {
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
xfer_ctl_t* xfer = XFER_CTL_BASE(epnum, dir);
xfer->buffer = buffer;
xfer->ff = NULL;
xfer->total_len = total_bytes;
// EP0 can only handle one packet
if (epnum == 0) {
ep0_pending[dir] = total_bytes;
// Schedule the first transaction for EP0 transfer
edpt_schedule_packets(rhport, epnum, dir, 1, ep0_pending[dir]);
} else {
uint16_t num_packets = tu_div_ceil(total_bytes, xfer->max_size);
if (num_packets == 0) {
num_packets = 1; // zero length packet still count as 1
}
// Schedule packets to be sent within interrupt
edpt_schedule_packets(rhport, epnum, dir, num_packets, total_bytes);
}
return true;
}
// The number of bytes has to be given explicitly to allow more flexible control of how many
// bytes should be written and second to keep the return value free to give back a boolean
// success message. If total_bytes is too big, the FIFO will copy only what is available
// into the USB buffer!
bool dcd_edpt_xfer_fifo(uint8_t rhport, uint8_t ep_addr, tu_fifo_t* ff, uint16_t total_bytes) {
// USB buffers always work in bytes so to avoid unnecessary divisions we demand item_size = 1
TU_ASSERT(ff->item_size == 1);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
xfer_ctl_t* xfer = XFER_CTL_BASE(epnum, dir);
xfer->buffer = NULL;
xfer->ff = ff;
xfer->total_len = total_bytes;
uint16_t num_packets = (total_bytes / xfer->max_size);
uint16_t const short_packet_size = total_bytes % xfer->max_size;
// Zero-size packet is special case.
if (short_packet_size > 0 || (total_bytes == 0)) {
num_packets++;
}
// Schedule packets to be sent within interrupt
edpt_schedule_packets(rhport, epnum, dir, num_packets, total_bytes);
return true;
}
void dcd_edpt_close(uint8_t rhport, uint8_t ep_addr) {
edpt_disable(rhport, ep_addr, false);
}
void dcd_edpt_stall(uint8_t rhport, uint8_t ep_addr) {
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
edpt_disable(rhport, ep_addr, true);
if((tu_edpt_number(ep_addr) == 0) && dma_device_enabled(dwc2)) {
dma_setup_prepare(rhport);
}
}
void dcd_edpt_clear_stall(uint8_t rhport, uint8_t ep_addr) {
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
uint8_t const epnum = tu_edpt_number(ep_addr);
uint8_t const dir = tu_edpt_dir(ep_addr);
dwc2_dep_t* dep = &dwc2->ep[1 - dir][epnum];
// Clear stall and reset data toggle
dep->ctl &= ~EPCTL_STALL;;
dep->ctl |= EPCTL_SD0PID_SEVNFRM;
}
//--------------------------------------------------------------------
// Interrupt Handler
//--------------------------------------------------------------------
// Process shared receive FIFO, this interrupt is only used in Slave mode
static void handle_rxflvl_irq(uint8_t rhport) {
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
const volatile uint32_t* rx_fifo = dwc2->fifo[0];
// Pop control word off FIFO
const dwc2_grxstsp_t grxstsp_bm = dwc2->grxstsp_bm;
const uint8_t epnum = grxstsp_bm.ep_ch_num;
const uint16_t byte_count = grxstsp_bm.byte_count;
dwc2_epout_t* epout = &dwc2->epout[epnum];
switch (grxstsp_bm.packet_status) {
// Global OUT NAK: do nothing
case GRXSTS_PKTSTS_GLOBALOUTNAK:
break;
case GRXSTS_PKTSTS_SETUPRX:
// Setup packet received
// We can receive up to three setup packets in succession, but only the last one is valid.
_setup_packet[0] = (*rx_fifo);
_setup_packet[1] = (*rx_fifo);
break;
case GRXSTS_PKTSTS_SETUPDONE:
// Setup packet done:
// After popping this out, dwc2 asserts a DOEPINT_SETUP interrupt which is handled by handle_epout_irq()
epout->doeptsiz |= (3 << DOEPTSIZ_STUPCNT_Pos);
break;
case GRXSTS_PKTSTS_OUTRX: {
// Out packet received
xfer_ctl_t* xfer = XFER_CTL_BASE(epnum, TUSB_DIR_OUT);
// Read packet off RxFIFO
if (xfer->ff) {
// Ring buffer
tu_fifo_write_n_const_addr_full_words(xfer->ff, (const void*) (uintptr_t) rx_fifo, byte_count);
} else {
// Linear buffer
dfifo_read_packet(dwc2, xfer->buffer, byte_count);
// Increment pointer to xfer data
xfer->buffer += byte_count;
}
// short packet, minus remaining bytes (xfer_size)
if (byte_count < xfer->max_size) {
xfer->total_len -= epout->doeptsiz_bm.xfer_size;
if (epnum == 0) {
xfer->total_len -= ep0_pending[TUSB_DIR_OUT];
ep0_pending[TUSB_DIR_OUT] = 0;
}
}
break;
}
case GRXSTS_PKTSTS_OUTDONE:
/* Out packet done
After this entry is popped from the receive FIFO, dwc2 asserts a Transfer Completed interrupt on
the specified OUT endpoint which will be handled by handle_epout_irq() */
break;
default:
TU_BREAKPOINT();
break;
}
}
static void handle_epout_irq(uint8_t rhport) {
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
uint8_t const ep_count = _dwc2_controller[rhport].ep_count;
// DAINT for a given EP clears when DOEPINTx is cleared.
// OEPINT will be cleared when DAINT's out bits are cleared.
for (uint8_t epnum = 0; epnum < ep_count; epnum++) {
if (dwc2->daint & TU_BIT(DAINT_OEPINT_Pos + epnum)) {
dwc2_epout_t* epout = &dwc2->epout[epnum];
const uint32_t doepint = epout->doepint;
TU_ASSERT((epout->doepint & DOEPINT_AHBERR) == 0, );
// Setup and/or STPKTRX/STSPHSRX (from 3.00a) can be set along with XFRC, and also set independently.
if (dwc2->gsnpsid >= DWC2_CORE_REV_3_00a) {
if (doepint & DOEPINT_STSPHSRX) {
// Status phase received for control write: In token received from Host
epout->doepint = DOEPINT_STSPHSRX;
}
if (doepint & DOEPINT_STPKTRX) {
// New setup packet received, but wait for Setup done, since we can receive up to 3 setup consecutively
epout->doepint = DOEPINT_STPKTRX;
}
}
if (doepint & DOEPINT_SETUP) {
epout->doepint = DOEPINT_SETUP;
if(dma_device_enabled(dwc2)) {
dma_setup_prepare(rhport);
}
dcd_event_setup_received(rhport, (uint8_t*) _setup_packet, true);
}
// OUT XFER complete
if (doepint & DOEPINT_XFRC) {
epout->doepint = DOEPINT_XFRC;
// only handle data skip if it is setup or status related
// Normal OUT transfer complete
if (!(doepint & (DOEPINT_SETUP | DOEPINT_STPKTRX | DOEPINT_STSPHSRX))) {
xfer_ctl_t* xfer = XFER_CTL_BASE(epnum, TUSB_DIR_OUT);
if(dma_device_enabled(dwc2)) {
if ((epnum == 0) && ep0_pending[TUSB_DIR_OUT]) {
// EP0 can only handle one packet Schedule another packet to be received.
edpt_schedule_packets(rhport, epnum, TUSB_DIR_OUT, 1, ep0_pending[TUSB_DIR_OUT]);
} else {
// Fix packet length
uint16_t remain = (epout->doeptsiz & DOEPTSIZ_XFRSIZ_Msk) >> DOEPTSIZ_XFRSIZ_Pos;
xfer->total_len -= remain;
// this is ZLP, so prepare EP0 for next setup
if(epnum == 0 && xfer->total_len == 0) {
dma_setup_prepare(rhport);
}
dcd_event_xfer_complete(rhport, epnum, xfer->total_len, XFER_RESULT_SUCCESS, true);
}
} else {
// EP0 can only handle one packet
if ((epnum == 0) && ep0_pending[TUSB_DIR_OUT]) {
// Schedule another packet to be received.
edpt_schedule_packets(rhport, epnum, TUSB_DIR_OUT, 1, ep0_pending[TUSB_DIR_OUT]);
} else {
dcd_event_xfer_complete(rhport, epnum, xfer->total_len, XFER_RESULT_SUCCESS, true);
}
}
}
}
}
}
}
static void handle_epin_irq(uint8_t rhport) {
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
const uint8_t ep_count = _dwc2_controller[rhport].ep_count;
// DAINT for a given EP clears when DIEPINTx is cleared.
// IEPINT will be cleared when DAINT's out bits are cleared.
for (uint8_t n = 0; n < ep_count; n++) {
if (dwc2->daint & TU_BIT(DAINT_IEPINT_Pos + n)) {
// IN XFER complete (entire xfer).
xfer_ctl_t* xfer = XFER_CTL_BASE(n, TUSB_DIR_IN);
dwc2_epin_t* epin = &dwc2->epin[n];
if (epin->diepint & DIEPINT_XFRC) {
epin->diepint = DIEPINT_XFRC;
// EP0 can only handle one packet
if ((n == 0) && ep0_pending[TUSB_DIR_IN]) {
// Schedule another packet to be transmitted.
edpt_schedule_packets(rhport, n, TUSB_DIR_IN, 1, ep0_pending[TUSB_DIR_IN]);
} else {
if((n == 0) && dma_device_enabled(dwc2)) {
dma_setup_prepare(rhport);
}
dcd_event_xfer_complete(rhport, n | TUSB_DIR_IN_MASK, xfer->total_len, XFER_RESULT_SUCCESS, true);
}
}
// XFER FIFO empty
if ((epin->diepint & DIEPINT_TXFE) && (dwc2->diepempmsk & (1 << n))) {
// diepint's TXFE bit is read-only, software cannot clear it.
// It will only be cleared by hardware when written bytes is more than
// - 64 bytes or
// - Half/Empty of TX FIFO size (configured by GAHBCFG.TXFELVL)
const uint16_t remain_packets = epin->dieptsiz_bm.packet_count;
// Process every single packet (only whole packets can be written to fifo)
for (uint16_t i = 0; i < remain_packets; i++) {
const uint16_t remain_bytes = (uint16_t) epin->dieptsiz_bm.xfer_size;
// Packet can not be larger than ep max size
const uint16_t xact_bytes = tu_min16(remain_bytes, xfer->max_size);
// It's only possible to write full packets into FIFO. Therefore DTXFSTS register of current
// EP has to be checked if the buffer can take another WHOLE packet
if (xact_bytes > ((epin->dtxfsts & DTXFSTS_INEPTFSAV_Msk) << 2)) {
break;
}
// Push packet to Tx-FIFO
if (xfer->ff) {
volatile uint32_t* tx_fifo = dwc2->fifo[n];
tu_fifo_read_n_const_addr_full_words(xfer->ff, (void*) (uintptr_t) tx_fifo, xact_bytes);
} else {
dfifo_write_packet(dwc2, n, xfer->buffer, xact_bytes);
xfer->buffer += xact_bytes;
}
}
// Turn off TXFE if all bytes are written.
if (epin->dieptsiz_bm.xfer_size == 0) {
dwc2->diepempmsk &= ~(1 << n);
}
}
}
}
}
/* Interrupt Hierarchy
DxEPINTn
|
DAINT.xEPn
|
GINTSTS: xEPInt
Note: when OTG_MULTI_PROC_INTRPT = 1, Device Each endpoint interrupt deachint/deachmsk/diepeachmsk/doepeachmsk
are combined to generate dedicated interrupt line for each endpoint.
*/
void dcd_int_handler(uint8_t rhport) {
dwc2_regs_t* dwc2 = DWC2_REG(rhport);
uint32_t const int_mask = dwc2->gintmsk;
uint32_t const int_status = dwc2->gintsts & int_mask;
if (int_status & GINTSTS_USBRST) {
// USBRST is start of reset.
dwc2->gintsts = GINTSTS_USBRST;
bus_reset(rhport);
}
if (int_status & GINTSTS_ENUMDNE) {
// ENUMDNE is the end of reset where speed of the link is detected
dwc2->gintsts = GINTSTS_ENUMDNE;
tusb_speed_t speed;
switch ((dwc2->dsts & DSTS_ENUMSPD_Msk) >> DSTS_ENUMSPD_Pos) {
case DSTS_ENUMSPD_HS:
speed = TUSB_SPEED_HIGH;
break;
case DSTS_ENUMSPD_LS:
speed = TUSB_SPEED_LOW;
break;
case DSTS_ENUMSPD_FS_HSPHY:
case DSTS_ENUMSPD_FS:
default:
speed = TUSB_SPEED_FULL;
break;
}
// TODO must update GUSBCFG_TRDT according to link speed
dcd_event_bus_reset(rhport, speed, true);
}
if (int_status & GINTSTS_USBSUSP) {
dwc2->gintsts = GINTSTS_USBSUSP;
dcd_event_bus_signal(rhport, DCD_EVENT_SUSPEND, true);
}
if (int_status & GINTSTS_WKUINT) {
dwc2->gintsts = GINTSTS_WKUINT;
dcd_event_bus_signal(rhport, DCD_EVENT_RESUME, true);
}
// TODO check GINTSTS_DISCINT for disconnect detection
// if(int_status & GINTSTS_DISCINT)
if (int_status & GINTSTS_OTGINT) {
// OTG INT bit is read-only
uint32_t const otg_int = dwc2->gotgint;
if (otg_int & GOTGINT_SEDET) {
dcd_event_bus_signal(rhport, DCD_EVENT_UNPLUGGED, true);
}
dwc2->gotgint = otg_int;
}
if(int_status & GINTSTS_SOF) {
dwc2->gintsts = GINTSTS_SOF;
const uint32_t frame = (dwc2->dsts & DSTS_FNSOF) >> DSTS_FNSOF_Pos;
// Disable SOF interrupt if SOF was not explicitly enabled since SOF was used for remote wakeup detection
if (!_sof_en) {
dwc2->gintmsk &= ~GINTMSK_SOFM;
}
dcd_event_sof(rhport, frame, true);
}
// RxFIFO non-empty interrupt handling.
if (int_status & GINTSTS_RXFLVL) {
// RXFLVL bit is read-only
dwc2->gintmsk &= ~GINTMSK_RXFLVLM; // disable RXFLVL interrupt while reading
do {
handle_rxflvl_irq(rhport); // read all packets
} while(dwc2->gintsts & GINTSTS_RXFLVL);
dwc2->gintmsk |= GINTMSK_RXFLVLM;
}
// OUT endpoint interrupt handling.
if (int_status & GINTSTS_OEPINT) {
// OEPINT is read-only, clear using DOEPINTn
handle_epout_irq(rhport);
}
// IN endpoint interrupt handling.
if (int_status & GINTSTS_IEPINT) {
// IEPINT bit read-only, clear using DIEPINTn
handle_epin_irq(rhport);
}
// // Check for Incomplete isochronous IN transfer