Provides installation guide.
Details on structuring and preparing the data.
Details on how to run the code.
1.2 Pytorch(1.10.0) which can be installed with details provided here: https://pytorch.org/get-started/locally/
For most users, pip3 install torch torchvision
should work.
If you are using Anaconda, conda install pytorch torchvision -c pytorch
should work.
Create a virtual environment using Conda or Virtualenv and install all the dependencies using requirement.txt file.
The first step is to create the folder heirarchy. The dataset is originally split by subject. You should create separate directories per class.
Biovid
- 0 # class folder (BL1)
- 071309_w_21-BL1-082 # Subject folder
- img_00001.jpg #face images
- .
- img_00075.jpg #face images
- .
- 110810_m_62-BL1-094
- img_00001.jpg #face images
- .
- img_00075.jpg #face images*
- 071309_w_21-BL1-082 # Subject folder
- 4 # Class folder (PA4)
- 071309_w_21-PA4-006 # subject folder
- img_00001.jpg #face images
- .
- img_00075.jpg #face images
- 071614_m_20-PA4-010
- img_00001.jpg #face images
- .
- img_00075.jpg #face images
- 071309_w_21-PA4-006 # subject folder
Create annotaions files using create_annotationstxt.py file. The annotations should be in the following format. class_folder/subject_folder start_frame end_frame class label e.g. 4/073109_w_28-PA4-062 0 75 1 The create_annotationstxt.py file also provides the code for k-fold annotations.
3.1.3 video_dataset_mm.py
Provides the dataloaders to be used by pkdot_kfold file. Used to load both visual and phyioslogical modality.
3.1.5 physio_transforms.py
Provides the functions for transformation and filtering of physiological modality.
The 'pkdot_kfold.py' file requires the paths for the pretrained teacher models.