Skip to content

haseebaslam95/PKDOT

Repository files navigation

Priviliged Knowledge Distillation with Optimal Transport (PKDOT)



0. Table of Contents

This manual has has two parts

1- Installation

Provides installation guide.

2- Dataset

Details on structuring and preparing the data.

2- Running the code

Details on how to run the code.


1. Installation

1.2 Pytorch(1.10.0) which can be installed with details provided here: https://pytorch.org/get-started/locally/

For most users, pip3 install torch torchvision should work. If you are using Anaconda, conda install pytorch torchvision -c pytorch should work.

Create a virtual environment using Conda or Virtualenv and install all the dependencies using requirement.txt file.

2. Dataset

The first step is to create the folder heirarchy. The dataset is originally split by subject. You should create separate directories per class.

Biovid

  • 0 # class folder (BL1)
    • 071309_w_21-BL1-082 # Subject folder
      • img_00001.jpg #face images
      • .
      • img_00075.jpg #face images
    • .
    • 110810_m_62-BL1-094
      • img_00001.jpg #face images
      • .
      • img_00075.jpg #face images*
  • 4 # Class folder (PA4)
    • 071309_w_21-PA4-006 # subject folder
      • img_00001.jpg #face images
      • .
      • img_00075.jpg #face images
    • 071614_m_20-PA4-010
      • img_00001.jpg #face images
      • .
      • img_00075.jpg #face images

Create annotaions files using create_annotationstxt.py file. The annotations should be in the following format. class_folder/subject_folder start_frame end_frame class label e.g. 4/073109_w_28-PA4-062 0 75 1 The create_annotationstxt.py file also provides the code for k-fold annotations.

3. Running The code

3.1 Important Files In codebase:

3.1.1 models.py in the 'models' folder creates and defines all the models.

3.1.2 pkdot_kfold.py The main code. Trains the student model.

3.1.3 video_dataset_mm.py Provides the dataloaders to be used by pkdot_kfold file. Used to load both visual and phyioslogical modality.

3.1.4 pkdot_utils.py Provides functions for similarity matrices and visualizations.

3.1.5 physio_transforms.pyProvides the functions for transformation and filtering of physiological modality.

The 'pkdot_kfold.py' file requires the paths for the pretrained teacher models.

Reference

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages