-
Notifications
You must be signed in to change notification settings - Fork 127
/
reconstruction.py
89 lines (70 loc) · 3.65 KB
/
reconstruction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import os
from tqdm import tqdm
import torch
from torch.utils.data import DataLoader
from logger import Logger, Visualizer
import numpy as np
import imageio
from sync_batchnorm import DataParallelWithCallback
import depth
def reconstruction(config, generator, kp_detector, checkpoint, log_dir, dataset):
png_dir = os.path.join(log_dir, 'reconstruction/png')
log_dir = os.path.join(log_dir, 'reconstruction')
if checkpoint is not None:
Logger.load_cpk(checkpoint, generator=generator, kp_detector=kp_detector)
else:
raise AttributeError("Checkpoint should be specified for mode='reconstruction'.")
dataloader = DataLoader(dataset, batch_size=1, shuffle=False, num_workers=1)
if not os.path.exists(log_dir):
os.makedirs(log_dir)
if not os.path.exists(png_dir):
os.makedirs(png_dir)
loss_list = []
if torch.cuda.is_available():
generator = DataParallelWithCallback(generator)
kp_detector = DataParallelWithCallback(kp_detector)
depth_encoder = depth.ResnetEncoder(18, False).cuda()
depth_decoder = depth.DepthDecoder(num_ch_enc=depth_encoder.num_ch_enc, scales=range(4)).cuda()
loaded_dict_enc = torch.load('depth/models/weights_19/encoder.pth')
loaded_dict_dec = torch.load('depth/models/weights_19/depth.pth')
filtered_dict_enc = {k: v for k, v in loaded_dict_enc.items() if k in depth_encoder.state_dict()}
depth_encoder.load_state_dict(filtered_dict_enc)
depth_decoder.load_state_dict(loaded_dict_dec)
depth_decoder.eval()
depth_encoder.eval()
generator.eval()
kp_detector.eval()
for it, x in tqdm(enumerate(dataloader)):
if config['reconstruction_params']['num_videos'] is not None:
if it > config['reconstruction_params']['num_videos']:
break
with torch.no_grad():
predictions = []
visualizations = []
if torch.cuda.is_available():
x['video'] = x['video'].cuda()
outputs = depth_decoder(depth_encoder(x['video'][:, :, 0]))
depth_source = outputs[("disp", 0)]
source_rgbd = torch.cat((x['video'][:, :, 0],depth_source),1)
kp_source = kp_detector(source_rgbd)
for frame_idx in range(x['video'].shape[2]):
source = x['video'][:, :, 0]
driving = x['video'][:, :, frame_idx]
outputs = depth_decoder(depth_encoder(driving))
depth_driving = outputs[("disp", 0)]
driving_rgbd = torch.cat((driving,depth_driving),1)
kp_driving = kp_detector(driving_rgbd)
out = generator(source, kp_source=kp_source, kp_driving=kp_driving)
out['kp_source'] = kp_source
out['kp_driving'] = kp_driving
del out['sparse_deformed']
predictions.append(np.transpose(out['prediction'].data.cpu().numpy(), [0, 2, 3, 1])[0])
visualization = Visualizer(**config['visualizer_params']).visualize(source=source,
driving=driving, out=out)
visualizations.append(visualization)
loss_list.append(torch.abs(out['prediction'] - driving).mean().cpu().numpy())
predictions = np.concatenate(predictions, axis=1)
imageio.imsave(os.path.join(png_dir, x['name'][0] + '.png'), (255 * predictions).astype(np.uint8))
image_name = x['name'][0] + config['reconstruction_params']['format']
imageio.mimsave(os.path.join(log_dir, image_name), visualizations)
print("Reconstruction loss: %s" % np.mean(loss_list))