forked from apache/mxnet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathndarray_function-inl.cuh
67 lines (62 loc) · 2.49 KB
/
ndarray_function-inl.cuh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \file ndarray_function-inl.cuh
* \brief Implementation of ndarray function kernels on GPU
*/
#ifndef MXNET_NDARRAY_NDARRAY_FUNCTION_INL_CUH_
#define MXNET_NDARRAY_NDARRAY_FUNCTION_INL_CUH_
namespace mxnet {
namespace ndarray {
/*!
* \brief GPU kernel to perform RSP tensor addition: out += in
* Parallelization by non-zero input elements: 1 thread/element
*/
struct ElementWiseRspAdditionKernel {
/*!
* \brief
* \param tid global thread id
* \param data_out rsp output data
* \param row_flg rsp output inclusive prefix sum array over non-zero marked rows
* \param row_idx_in rsp input non-zero row indices
* \param data_in rsp input data
* \param nnr_in rsp input number of non-zero rows
* \param row_length rsp input and output number of elements per row
*/
template<typename DType, typename IType>
__device__ __forceinline__ static void Map(int tid,
DType* data_out,
const IType* row_flg,
const IType* row_idx_in,
const DType* data_in,
const nnvm::dim_t nnr_in,
const nnvm::dim_t row_length) {
using nnvm::dim_t;
if (tid < nnr_in * row_length) {
dim_t in_row = tid / row_length;
dim_t in_col = tid % row_length;
dim_t out_row = row_flg[row_idx_in[in_row]] - 1;
dim_t out_idx = out_row * row_length + in_col;
data_out[out_idx] += data_in[tid];
}
}
};
} // namespace ndarray
} // namespace mxnet
#endif // MXNET_NDARRAY_NDARRAY_FUNCTION_INL_CUH_