-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy path3DPC_Data_Gen.py
executable file
·87 lines (69 loc) · 3.08 KB
/
3DPC_Data_Gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
# Copyright (c) 2020. Author: Hanchen Wang, hc.wang96@gmail.com
# Generating Training Data of 3D Point Cloud for 3D Jigsaw Puzzles
import os, h5py, numpy as np
'''
The 3D object/block is split into voxels along axes,
each point is assigned with a voxel label.
'''
def pc_ssl_3djigsaw_gen(pc_xyz, k=2, edge_len=1):
"""
:param pc_xyz: point cloud, (n_point, 3 + additional feature)
:param k: number of voxels along each axis
:param edge_len: length of voxel (cube) edge
:return: permuted pc, labels
"""
intervals = [edge_len*2 / k * x - edge_len for x in np.arange(k + 1)]
assert edge_len >= pc_xyz.__abs__().max()
indices = np.searchsorted(intervals, pc_xyz, side='left') - 1
label = indices[:, 0] * k ** 2 + indices[:, 1] * k + indices[:, 2]
shuffle_indices = np.arange(k ** 3)
np.random.shuffle(shuffle_indices)
shuffled_dict = dict()
for i, d in enumerate(shuffle_indices):
shuffled_dict[i] = d
def numberToBase(n, base=k):
if n == 0:
return [0]
digits = []
while n:
digits.append(str(int(n % base)))
n //= base
return int("".join(digits[::-1]))
for voxel_id in range(k ** 3):
selected_points = (label == voxel_id)
permutated_places = shuffled_dict[voxel_id]
loc = permutated_places
center_diff = np.array([(loc // k ** 2) - (voxel_id // k ** 2),
(loc // k ** 2) // k - (voxel_id // k ** 2) // k,
loc % k - voxel_id % k]) * (2 * edge_len)/k # + const - edge_len
pc_xyz[selected_points] = pc_xyz[selected_points] + center_diff
return pc_xyz, label
if __name__ == "__main__":
root_dir = r'./data/modelnet40_ply_hdf5_2048'
dir_path = r'./data/modelnet40_ply_hdf5_2048/jigsaw/k2'
os.mkdir(dir_path) if not os.path.exists(dir_path) else None
TRAIN_FILES = [item.strip() for item in open(os.path.join(root_dir, 'train_files.txt')).readlines()]
VALID_FILES = [item.strip() for item in open(os.path.join(root_dir, 'test_files.txt')).readlines()]
def loadh5DataFile(PathtoFile):
f = h5py.File(PathtoFile, 'r')
return f['data'][:], f['label'][:]
def reduce2fix(pc, n_points=1024):
indices = np.arange(len(pc))
np.random.shuffle(indices)
return pc[indices[:n_points]]
for file_ in VALID_FILES:
filename = file_.split('/')[-1]
print(filename)
data, _ = loadh5DataFile(file_)
# subsample all point clouds into 1024 points of each
data = np.apply_along_axis(reduce2fix, axis=1, arr=data)
shuffled_data = np.zeros_like(data)
shuffled_label = np.zeros((data.shape[0], data.shape[1]))
for idx, pc_xyz in enumerate(data):
pc_xyz, label = pc_ssl_3djigsaw_gen(pc_xyz, k=2, edge_len=1)
shuffled_data[idx] = pc_xyz
shuffled_label[idx] = label
hf = h5py.File(os.path.join(dir_path, filename), 'w')
hf.create_dataset('label', data=shuffled_label)
hf.create_dataset('data', data=shuffled_data)
hf.close()