-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathtrain_completion.py
executable file
·237 lines (200 loc) · 10.3 KB
/
train_completion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# Copyright (c) 2020. Hanchen Wang, hw501@cam.ac.uk
import os, pdb, time, argparse, datetime, importlib, numpy as np, tensorflow as tf
from utils import lmdb_dataflow, add_train_summary, plot_pcd_three_views
from termcolor import colored
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=str, default='1')
parser.add_argument('--lmdb_train', default='data/modelnet/train.lmdb')
parser.add_argument('--lmdb_valid', default='data/modelnet/test.lmdb')
parser.add_argument('--log_dir', type=str, default='')
parser.add_argument('--model_type', default='pcn_cd')
parser.add_argument('--restore', action='store_true')
parser.add_argument('--restore_path', default='log/pcn_cd')
parser.add_argument('--batch_size', type=int, default=16)
parser.add_argument('--num_gt_points', type=int, default=16384)
parser.add_argument('--base_lr', type=float, default=1e-4)
parser.add_argument('--lr_decay', action='store_true')
parser.add_argument('--lr_decay_steps', type=int, default=50000)
parser.add_argument('--lr_decay_rate', type=float, default=0.7)
parser.add_argument('--lr_clip', type=float, default=1e-6)
parser.add_argument('--max_step', type=int, default=3000000)
parser.add_argument('--epoch', type=int, default=50)
parser.add_argument('--steps_per_print', type=int, default=100)
parser.add_argument('--steps_per_eval', type=int, default=1000)
parser.add_argument('--steps_per_visu', type=int, default=3456)
parser.add_argument('--epochs_per_save', type=int, default=5)
parser.add_argument('--visu_freq', type=int, default=10)
parser.add_argument('--store_grad', action='store_true')
parser.add_argument('--num_input_points', type=int, default=1024)
parser.add_argument('--dataset', default='modelnet40')
args = parser.parse_args()
BATCH_SIZE = args.batch_size
NUM_POINT = args.num_input_points
NUM_GT_POINT = args.num_gt_points
DECAY_STEP = args.lr_decay_steps
DATASET = args.dataset
BN_INIT_DECAY = 0.5
BN_DECAY_DECAY_RATE = 0.5
BN_DECAY_DECAY_STEP = float(DECAY_STEP)
BN_DECAY_CLIP = 0.99
def get_bn_decay(batch):
bn_momentum = tf.train.exponential_decay(
BN_INIT_DECAY,
batch * BATCH_SIZE,
BN_DECAY_DECAY_STEP,
BN_DECAY_DECAY_RATE,
staircase=True)
bn_decay = tf.minimum(BN_DECAY_CLIP, 1 - bn_momentum)
return bn_decay
def vary2fix(inputs, npts):
inputs_ls = np.split(inputs[0], npts.cumsum())
ret_inputs = np.zeros((1, BATCH_SIZE * NUM_POINT, 3), dtype=np.float32)
ret_npts = npts.copy()
for idx, obj in enumerate(inputs_ls[:-1]):
if len(obj) <= NUM_POINT:
select_idx = np.concatenate([
np.arange(len(obj)), np.random.choice(len(obj), NUM_POINT - len(obj))])
else:
select_idx = np.arange(len(obj))
np.random.shuffle(select_idx)
pdb.set_trace()
ret_inputs[0][idx * NUM_POINT:(idx + 1) * NUM_POINT] = obj[select_idx].copy()
ret_npts[idx] = NUM_POINT
return ret_inputs, ret_npts
def train(args):
is_training_pl = tf.placeholder(tf.bool, shape=(), name='is_training')
global_step = tf.Variable(0, trainable=False, name='global_step')
alpha = tf.train.piecewise_constant(global_step, [10000, 20000, 50000],
[0.01, 0.1, 0.5, 1.0], 'alpha_op')
# for ModelNet, it is with Fixed Number of Input Points
# for ShapeNet, it is with Varying Number of Input Points
inputs_pl = tf.placeholder(tf.float32, (1, BATCH_SIZE * NUM_POINT, 3), 'inputs')
npts_pl = tf.placeholder(tf.int32, (BATCH_SIZE,), 'num_points')
gt_pl = tf.placeholder(tf.float32, (BATCH_SIZE, args.num_gt_points, 3), 'ground_truths')
add_train_summary('alpha', alpha)
bn_decay = get_bn_decay(global_step)
add_train_summary('bn_decay', bn_decay)
model_module = importlib.import_module('.%s' % args.model_type, 'completion_models')
model = model_module.Model(inputs_pl, npts_pl, gt_pl, alpha,
bn_decay=bn_decay, is_training=is_training_pl)
# Another Solution instead of importlib:
# ldic = locals()
# exec('from completion_models.%s import Model' % args.model_type, globals(), ldic)
# model = ldic['Model'](inputs_pl, npts_pl, gt_pl, alpha,
# bn_decay=bn_decay, is_training=is_training_pl)
if args.lr_decay:
learning_rate = tf.train.exponential_decay(args.base_lr, global_step,
args.lr_decay_steps, args.lr_decay_rate,
staircase=True, name='lr')
learning_rate = tf.maximum(learning_rate, args.lr_clip)
add_train_summary('learning_rate', learning_rate)
else:
learning_rate = tf.constant(args.base_lr, name='lr')
trainer = tf.train.AdamOptimizer(learning_rate)
train_op = trainer.minimize(model.loss, global_step)
saver = tf.train.Saver(max_to_keep=10)
''' from PCN paper:
All our completion_models are trained using the Adam optimizer
with an initial learning rate of 0.0001 for 50 epochs
and a batch size of 32. The learning rate is decayed by 0.7 every 50K iterations.
'''
if args.store_grad:
grads_and_vars = trainer.compute_gradients(model.loss)
for g, v in grads_and_vars:
tf.summary.histogram(v.name, v, collections=['train_summary'])
tf.summary.histogram(v.name + '_grad', g, collections=['train_summary'])
train_summary = tf.summary.merge_all('train_summary')
valid_summary = tf.summary.merge_all('valid_summary')
# the input number of points for the partial observed data is not a fixed number
df_train, num_train = lmdb_dataflow(
args.lmdb_train, args.batch_size,
args.num_input_points, args.num_gt_points, is_training=True)
train_gen = df_train.get_data()
df_valid, num_valid = lmdb_dataflow(
args.lmdb_valid, args.batch_size,
args.num_input_points, args.num_gt_points, is_training=False)
valid_gen = df_valid.get_data()
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
sess = tf.Session(config=config)
if args.restore:
saver.restore(sess, tf.train.latest_checkpoint(args.log_dir))
writer = tf.summary.FileWriter(args.log_dir)
else:
sess.run(tf.global_variables_initializer())
if os.path.exists(args.log_dir):
delete_key = input(colored('%s exists. Delete? [y/n]' % args.log_dir, 'white', 'on_red'))
if delete_key == 'y' or delete_key == "yes":
os.system('rm -rf %s/*' % args.log_dir)
os.makedirs(os.path.join(args.log_dir, 'plots'))
else:
os.makedirs(os.path.join(args.log_dir, 'plots'))
with open(os.path.join(args.log_dir, 'args.txt'), 'w') as log:
for arg in sorted(vars(args)):
log.write(arg + ': ' + str(getattr(args, arg)) + '\n')
log.close()
os.system('cp completion_models/%s.py %s' % (args.model_type, args.log_dir)) # bkp of model scripts
os.system('cp train_completion.py %s' % args.log_dir) # bkp of train procedure
writer = tf.summary.FileWriter(args.log_dir, sess.graph) # GOOD habit
log_fout = open(os.path.join(args.log_dir, 'log_train.txt'), 'a+')
for arg in sorted(vars(args)):
log_fout.write(arg + ': ' + str(getattr(args, arg)) + '\n')
log_fout.flush()
total_time = 0
train_start = time.time()
init_step = sess.run(global_step)
for step in range(init_step + 1, args.max_step + 1):
epoch = step * args.batch_size // num_train + 1
ids, inputs, npts, gt = next(train_gen)
if epoch > args.epoch:
break
if DATASET == 'shapenet8':
inputs, npts = vary2fix(inputs, npts)
start = time.time()
feed_dict = {inputs_pl: inputs, npts_pl: npts, gt_pl: gt, is_training_pl: True}
_, loss, summary = sess.run([train_op, model.loss, train_summary], feed_dict=feed_dict)
total_time += time.time() - start
writer.add_summary(summary, step)
if step % args.steps_per_print == 0:
print('epoch %d step %d loss %.8f - time per batch %.4f' %
(epoch, step, loss, total_time / args.steps_per_print))
total_time = 0
if step % args.steps_per_eval == 0:
print(colored('Testing...', 'grey', 'on_green'))
num_eval_steps = num_valid // args.batch_size
total_loss, total_time = 0, 0
sess.run(tf.local_variables_initializer())
for i in range(num_eval_steps):
start = time.time()
_, inputs, npts, gt = next(valid_gen)
if DATASET == 'shapenet8':
inputs, npts = vary2fix(inputs, npts)
feed_dict = {inputs_pl: inputs, npts_pl: npts, gt_pl: gt, is_training_pl: False}
loss, _ = sess.run([model.loss, model.update], feed_dict=feed_dict)
total_loss += loss
total_time += time.time() - start
summary = sess.run(valid_summary, feed_dict={is_training_pl: False})
writer.add_summary(summary, step)
print(colored('epoch %d step %d loss %.8f - time per batch %.4f' %
(epoch, step, total_loss / num_eval_steps, total_time / num_eval_steps),
'grey', 'on_green'))
total_time = 0
if step % args.steps_per_visu == 0:
all_pcds = sess.run(model.visualize_ops, feed_dict=feed_dict)
for i in range(0, args.batch_size, args.visu_freq):
plot_path = os.path.join(args.log_dir, 'plots',
'epoch_%d_step_%d_%s.png' % (epoch, step, ids[i]))
pcds = [x[i] for x in all_pcds]
plot_pcd_three_views(plot_path, pcds, model.visualize_titles)
if (epoch % args.epochs_per_save == 0) and \
not os.path.exists(os.path.join(args.log_dir, 'model-%d.meta' % epoch)):
saver.save(sess, os.path.join(args.log_dir, 'model'), epoch)
print(colored('Epoch:%d, Model saved at %s' % (epoch, args.log_dir), 'white', 'on_blue'))
print('Total time', datetime.timedelta(seconds=time.time() - train_start))
sess.close()
if __name__ == '__main__':
print('Now Using GPU:%s to train the model' % args.gpu)
os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
train(args)