forked from jaywalnut310/vits
-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
68 lines (55 loc) · 2.04 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
#%matplotlib inline
import matplotlib.pyplot as plt
import IPython.display as ipd
import os
import json
import math
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
import commons
import utils
from data_utils import TextAudioLoader, TextAudioCollate, TextAudioSpeakerLoader, TextAudioSpeakerCollate
from models import SynthesizerTrn
from text.symbols import symbols
from text import text_to_sequence
from scipy.io.wavfile import write
from scipy.io.wavfile import write
import IPython.display as ipd
def get_text(text, hps):
text_norm = text_to_sequence(text, hps.data.text_cleaners)
if hps.data.add_blank:
text_norm = commons.intersperse(text_norm, 0)
text_norm = torch.LongTensor(text_norm)
return text_norm
def generate_audio(text, net_g, hps):
stn_tst = get_text(text, hps)
with torch.no_grad():
x_tst = stn_tst.cuda().unsqueeze(0)
x_tst_lengths = torch.LongTensor([stn_tst.size(0)]).cuda()
audio = net_g.infer(x_tst, x_tst_lengths, noise_scale=.667, noise_scale_w=0.8, length_scale=1)[0][0,0].data.cpu().float().numpy()
return audio
def save_audio(audio, path, sr):
write(path, sr, audio)
def main():
hps = utils.get_hparams_from_file("./configs/ljs_base.json")
net_g = SynthesizerTrn(
len(symbols),
hps.data.filter_length // 2 + 1,
hps.train.segment_size // hps.data.hop_length,
**hps.model).cuda()
_ = net_g.eval()
_ = utils.load_checkpoint("e:/data/pretrained_ljs.pth", net_g, None)
while True:
text = input("Enter text to generate speech (or type q to quit): ")
if text == "q":
break
audio = generate_audio(text, net_g, hps)
ipd.display(ipd.Audio(audio, rate=hps.data.sampling_rate, normalize=False))
save_path = input("Enter the path to save the audio file (or press Enter to skip saving): ")
if save_path:
save_audio(audio, save_path, hps.data.sampling_rate)
print("Goodbye!")
if __name__ == "__main__":
main()