hamza@vulkan-labs:~$ cat /proc/self/status | head -8
Name: Hamza Aamer
Role: CEO & Founder @ Vulkan Labs | AI Engineer @ Adept Tech
Education: FAST NUCES CS | Final Semester (July 2025)
Specialization: Neural Architectures, GPU Computing, XR Systems
Location: Islamabad, Pakistan ๐ต๐ฐ
Email: hamza@vulkanlabs.com | hello@vulkanlabs.com
Status: Building the future of intelligent systems
Uptime: 8760 hours of continuous neural processing- ๐ฌ Archeon - Real-time 3D neural environment reconstruction with HTC Vive
- ๐ค Vulkan AI Agents - Multi-agent orchestration framework
- โก CUDA Neural Kernels - Custom optimized CUDA implementations
- ๐ฎ XR Neural Rendering - Unity + Neural fields for VR
services:
llama2-70b-server:
status: "Up 72 hours"
performance: "2048 tok/s"
stable-diffusion-xl:
status: "Up 72 hours"
performance: "2.1s per image"
archeon-3d-engine:
status: "Up 48 hours"
performance: "90 FPS VR"
crewai-orchestrator:
status: "Up 72 hours"
agents: 12 |
$ nvidia-smi --query-gpu=name,memory.used,utilization.gpu --format=csv,noheader,nounits
H100-80GB, 76234, 99
H100-80GB, 78901, 97
H100-80GB, 75432, 98
H100-80GB, 77123, 96
# ... 4 more H100s running at 95%+ util |
|
Founder & CEO class VulkanLabs:
def __init__(self):
self.mission = "Create trends, don't follow them"
self.focus = [
"GPU Computing",
"Neural Rendering",
"AI Acceleration",
"Custom Hardware"
] |
AI Engineer achievements = {
"class_imbalance": "SMOTE + Ascend pipelines",
"distributed_ml": "PySpark preprocessing",
"reproducibility": "99.7% consistency",
"client_projects": "15+ concurrent"
} |
AI Engineer systems_built = [
"Ant-AI genetic optimizer",
"Multi-agent orchestration",
"Tree of Thoughts reasoning",
"Social media automation"
] |
|
๐ฏ Technical Stack // Core Architecture
class ArcheonEngine {
GaussianSplatting* neural_fields;
HTCVive* vr_system;
UnityRenderer* real_time_engine;
CUDAKernels* optimization;
void reconstruct_scene() {
// 90 FPS neural rendering
// 60% memory efficiency gain
// Real-time VR interaction
}
}; |
๐ Performance Metrics
|
๐ Click to expand optimized kernel
// 2.3x faster than PyTorch default, 40% memory reduction
template<typename T, int HEAD_DIM>
__global__ void vulkan_flash_attention_v2(
const T* Q, const T* K, const T* V, T* O,
int batch_size, int num_heads, int seq_len, float scale
) {
extern __shared__ char shared_mem[];
T* shared_Q = reinterpret_cast<T*>(shared_mem);
// Tile-based processing with shared memory optimization
const int tid = threadIdx.x;
const int batch_idx = blockIdx.x;
const int head_idx = blockIdx.y;
// Online softmax with numerical stability
float row_max = -INFINITY;
float row_sum = 0.0f;
// ... optimized attention computation
}๐ Click to expand agent framework
from crewai import Agent, Task, Crew
class VulkanAgentOrchestrator:
def __init__(self):
self.performance = {
"coordination_latency": "15ms",
"success_rate": "94.7%",
"agents": 12,
"concurrent_tasks": 64
}
def deploy_agent_swarm(self):
researcher = Agent(
role="AI Research Specialist",
goal="Extract insights from technical papers",
tools=[web_scraper, pdf_processor, semantic_search]
)
# ... 11 more specialized agents๐ Click to expand VR integration
// Unity C# - Real-time neural field rendering
public class ArcheonVRRenderer : MonoBehaviour {
[Header("Neural Rendering")]
public ComputeShader gaussianSplattingCS;
public RenderTexture neuralOutput;
void Update() {
// 90 FPS constraint for VR
if (Time.deltaTime > 0.011f) return;
// Dispatch neural field computation
gaussianSplattingCS.Dispatch(0,
neuralFieldResolution.x / 8,
neuralFieldResolution.y / 8, 1);
// Update VR cameras
UpdateVRView();
}
}
$ git status
On branch main
Your neural architecture is ahead of reality by 1 year
๐ฏ 90 FPS VR rendering
โก 60% memory optimization
๐ง Custom CUDA kernels
๐ฎ HTC Vive integrationTech: |
$ docker-compose ps
SERVICE STATUS PORTS
crewai-core Up 72 hours :8005->8005
agents-12 Up 72 hours 94.7% success
coordinator Up 72 hours 15ms latencyTech: |
$ nvcc --version | grep release
release 12.4, V12.4.131
Performance: 2.3x faster than PyTorch
Memory: 40% HBM usage reduction
Optimization: Flash Attention v2Tech: |
$ unity-version
Unity 2023.2.20f1 (Neural Build)
Target: 90 FPS @ 2880x1700 per eye
Pipeline: Universal Render Pipeline
Neural: Real-time field renderingTech: |
| ๐ฏ System | ๐ Metric | โก Performance | ๐ฅ Status |
|---|---|---|---|
| GPU Cluster | Utilization | 97.3% avg | ๐ข OPTIMAL |
| Neural Inference | Throughput | 234K tok/s | ๐ข ACTIVE |
| VR Rendering | Frame Rate | 90 FPS | ๐ข STABLE |
| Agent Systems | Success Rate | 94.7% | ๐ข OPERATIONAL |
AI Infrastructure Consulting โข Technical Partnerships โข Research Collaborations
โญ If my neural architectures interest you, let's build something extraordinary
๐ฅ hamza-aamer pushed to main
๐ archeon/neural_engine.cu
โฐ 2 hours ago
โก hamza-aamer opened issue #47
๐ vulkan-labs/optimization
๐ฌ "GPU memory leak in CUDA kernel"
โฐ 4 hours ago
๐ง hamza-aamer merged PR #156
๐ archeon/vr-rendering
๐ "Fix VR frame drops below 90fps"
โฐ 6 hours ago |
๐ Neural Networks Trained: 127
๐ Models Deployed: 42
โ๏ธ CUDA Kernels Written: 89
๐ฎ VR Experiences Built: 15
๐ค AI Agents Orchestrated: 156
๐พ TB of Data Processed: 2,847
๐ Real-time updates via GitHub API
๐ก Last sync: 23 seconds ago |