forked from ray-project/ray
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstress_tests.py
285 lines (235 loc) · 8.84 KB
/
stress_tests.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import unittest
import ray
import numpy as np
import time
import redis
class TaskTests(unittest.TestCase):
def testSubmittingTasks(self):
for num_local_schedulers in [1, 4]:
for num_workers_per_scheduler in [4]:
num_workers = num_local_schedulers * num_workers_per_scheduler
ray.worker._init(start_ray_local=True, num_workers=num_workers,
num_local_schedulers=num_local_schedulers)
@ray.remote
def f(x):
return x
for _ in range(1):
ray.get([f.remote(1) for _ in range(1000)])
for _ in range(10):
ray.get([f.remote(1) for _ in range(100)])
for _ in range(100):
ray.get([f.remote(1) for _ in range(10)])
for _ in range(1000):
ray.get([f.remote(1) for _ in range(1)])
self.assertTrue(ray.services.all_processes_alive())
ray.worker.cleanup()
def testDependencies(self):
for num_local_schedulers in [1, 4]:
for num_workers_per_scheduler in [4]:
num_workers = num_local_schedulers * num_workers_per_scheduler
ray.worker._init(start_ray_local=True, num_workers=num_workers,
num_local_schedulers=num_local_schedulers)
@ray.remote
def f(x):
return x
x = 1
for _ in range(1000):
x = f.remote(x)
ray.get(x)
@ray.remote
def g(*xs):
return 1
xs = [g.remote(1)]
for _ in range(100):
xs.append(g.remote(*xs))
xs.append(g.remote(1))
ray.get(xs)
self.assertTrue(ray.services.all_processes_alive())
ray.worker.cleanup()
def testGettingAndPutting(self):
ray.init(num_workers=1)
for n in range(8):
x = np.zeros(10 ** n)
for _ in range(100):
ray.put(x)
x_id = ray.put(x)
for _ in range(1000):
ray.get(x_id)
self.assertTrue(ray.services.all_processes_alive())
ray.worker.cleanup()
def testWait(self):
for num_local_schedulers in [1, 4]:
for num_workers_per_scheduler in [4]:
num_workers = num_local_schedulers * num_workers_per_scheduler
ray.worker._init(start_ray_local=True, num_workers=num_workers,
num_local_schedulers=num_local_schedulers)
@ray.remote
def f(x):
return x
x_ids = [f.remote(i) for i in range(100)]
for i in range(len(x_ids)):
ray.wait([x_ids[i]])
for i in range(len(x_ids) - 1):
ray.wait(x_ids[i:])
@ray.remote
def g(x):
time.sleep(x)
for i in range(1, 5):
x_ids = [g.remote(np.random.uniform(0, i)) for _ in range(2 * num_workers)]
ray.wait(x_ids, num_returns=len(x_ids))
self.assertTrue(ray.services.all_processes_alive())
ray.worker.cleanup()
class ReconstructionTests(unittest.TestCase):
num_local_schedulers = 1
def setUp(self):
# Start a Redis instance and Plasma store instances with a total of 1GB
# memory.
node_ip_address = "127.0.0.1"
self.redis_port = ray.services.new_port()
print(self.redis_port)
redis_address = ray.services.address(node_ip_address, self.redis_port)
self.plasma_store_memory = 10 ** 9
plasma_addresses = []
objstore_memory = (self.plasma_store_memory // self.num_local_schedulers)
for i in range(self.num_local_schedulers):
plasma_addresses.append(
ray.services.start_objstore(node_ip_address, redis_address,
objstore_memory=objstore_memory)
)
address_info = {
"redis_address": redis_address,
"object_store_addresses": plasma_addresses,
}
# Start the rest of the services in the Ray cluster.
ray.worker._init(address_info=address_info, start_ray_local=True,
num_workers=self.num_local_schedulers, num_local_schedulers=self.num_local_schedulers)
def tearDown(self):
self.assertTrue(ray.services.all_processes_alive())
# Make sure that all nodes in the cluster were used by checking where tasks
# were scheduled and/or submitted from.
r = redis.StrictRedis(port=self.redis_port)
task_ids = r.keys("TT:*")
task_ids = [task_id[3:] for task_id in task_ids]
node_ids = [r.execute_command("ray.task_table_get", task_id)[1] for task_id
in task_ids]
self.assertEqual(len(set(node_ids)), self.num_local_schedulers)
# Clean up the Ray cluster.
ray.worker.cleanup()
def testSimple(self):
# Define the size of one task's return argument so that the combined sum of
# all objects' sizes is at least twice the plasma stores' combined allotted
# memory.
num_objects = 1000
size = self.plasma_store_memory * 2 // (num_objects * 8)
# Define a remote task with no dependencies, which returns a numpy array of
# the given size.
@ray.remote
def foo(i, size):
array = np.zeros(size)
array[0] = i
return array
# Launch num_objects instances of the remote task.
args = []
for i in range(num_objects):
args.append(foo.remote(i, size))
# Get each value to force each task to finish. After some number of gets,
# old values should be evicted.
for i in range(num_objects):
value = ray.get(args[i])
self.assertEqual(value[0], i)
# Get each value again to force reconstruction.
for i in range(num_objects):
value = ray.get(args[i])
self.assertEqual(value[0], i)
def testRecursive(self):
# Define the size of one task's return argument so that the combined sum of
# all objects' sizes is at least twice the plasma stores' combined allotted
# memory.
num_objects = 1000
size = self.plasma_store_memory * 2 // (num_objects * 8)
# Define a root task with no dependencies, which returns a numpy array of
# the given size.
@ray.remote
def no_dependency_task(size):
array = np.zeros(size)
return array
# Define a task with a single dependency, which returns its one argument.
@ray.remote
def single_dependency(i, arg):
arg = np.copy(arg)
arg[0] = i
return arg
# Launch num_objects instances of the remote task, each dependent on the
# one before it.
arg = no_dependency_task.remote(size)
args = []
for i in range(num_objects):
arg = single_dependency.remote(i, arg)
args.append(arg)
# Get each value to force each task to finish. After some number of gets,
# old values should be evicted.
for i in range(num_objects):
value = ray.get(args[i])
self.assertEqual(value[0], i)
# Get each value again to force reconstruction.
for i in range(num_objects):
value = ray.get(args[i])
self.assertEqual(value[0], i)
# Get 10 values randomly.
for _ in range(10):
i = np.random.randint(num_objects)
value = ray.get(args[i])
self.assertEqual(value[0], i)
def testMultipleRecursive(self):
# Define the size of one task's return argument so that the combined sum of
# all objects' sizes is at least twice the plasma stores' combined allotted
# memory.
num_objects = 1000
size = self.plasma_store_memory * 2 // (num_objects * 8)
# Define a root task with no dependencies, which returns a numpy array of
# the given size.
@ray.remote
def no_dependency_task(size):
array = np.zeros(size)
return array
# Define a task with multiple dependencies, which returns its first
# argument.
@ray.remote
def multiple_dependency(i, arg1, arg2, arg3):
arg1 = np.copy(arg1)
arg1[0] = i
return arg1
# Launch num_args instances of the root task. Then launch num_objects
# instances of the multi-dependency remote task, each dependent on the
# num_args tasks before it.
num_args = 3
args = []
for i in range(num_args):
arg = no_dependency_task.remote(size)
args.append(arg)
for i in range(num_objects):
args.append(multiple_dependency.remote(i, *args[i:i + num_args]))
# Get each value to force each task to finish. After some number of gets,
# old values should be evicted.
args = args[num_args:]
for i in range(num_objects):
value = ray.get(args[i])
self.assertEqual(value[0], i)
# Get each value again to force reconstruction.
for i in range(num_objects):
value = ray.get(args[i])
self.assertEqual(value[0], i)
# Get 10 values randomly.
for _ in range(10):
i = np.random.randint(num_objects)
value = ray.get(args[i])
self.assertEqual(value[0], i)
class ReconstructionTestsMultinode(ReconstructionTests):
# Run the same tests as the single-node suite, but with 4 local schedulers,
# one worker each.
num_local_schedulers = 4
if __name__ == "__main__":
unittest.main(verbosity=2)