-
Notifications
You must be signed in to change notification settings - Fork 1.1k
/
Copy pathCSE.cpp
535 lines (444 loc) · 17.3 KB
/
CSE.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
#include <map>
#include "CSE.h"
#include "IREquality.h"
#include "IRMutator.h"
#include "IROperator.h"
#include "IRVisitor.h"
#include "Scope.h"
#include "Simplify.h"
namespace Halide {
namespace Internal {
using std::map;
using std::pair;
using std::string;
using std::vector;
namespace {
// Some expressions are not worth lifting out into lets, even if they
// occur redundantly many times. They may also be illegal to lift out
// (e.g. calls with side-effects).
// This list should at least avoid lifting the same cases as that of the
// simplifier for lets, otherwise CSE and the simplifier will fight each
// other pointlessly.
bool should_extract(const Expr &e, bool lift_all) {
if (is_const(e)) {
return false;
}
if (e.as<Variable>()) {
return false;
}
if (lift_all) {
return true;
}
if (const Broadcast *a = e.as<Broadcast>()) {
return should_extract(a->value, false);
}
if (const Cast *a = e.as<Cast>()) {
return should_extract(a->value, false);
}
if (const Add *a = e.as<Add>()) {
return !(is_const(a->a) || is_const(a->b));
}
if (const Sub *a = e.as<Sub>()) {
return !(is_const(a->a) || is_const(a->b));
}
if (const Mul *a = e.as<Mul>()) {
return !(is_const(a->a) || is_const(a->b));
}
if (const Div *a = e.as<Div>()) {
return !(is_const(a->a) || is_const(a->b));
}
if (const Ramp *a = e.as<Ramp>()) {
return !is_const(a->stride);
}
return true;
}
// A global-value-numbering of expressions. Returns canonical form of
// the Expr and writes out a global value numbering as a side-effect.
class GVN : public IRMutator {
public:
struct Entry {
Expr expr;
int use_count = 0;
// All consumer Exprs for which this is the last child Expr.
map<Expr, int, IRGraphDeepCompare> uses;
Entry(const Expr &e)
: expr(e) {
}
};
vector<std::unique_ptr<Entry>> entries;
map<Expr, int, ExprCompare> shallow_numbering, output_numbering;
map<Expr, int, IRGraphDeepCompare> leaves;
int number = 0;
Stmt mutate(const Stmt &s) override {
internal_error << "Can't call GVN on a Stmt: " << s << "\n";
return Stmt();
}
Expr mutate(const Expr &e) override {
// Early out if we've already seen this exact Expr.
{
auto iter = shallow_numbering.find(e);
if (iter != shallow_numbering.end()) {
number = iter->second;
return entries[number]->expr;
}
}
// We haven't seen this exact Expr before. Rebuild it using
// things already in the numbering.
number = -1;
Expr new_e = IRMutator::mutate(e);
// 'number' is now set to the numbering for the last child of
// this Expr (or -1 if there are no children). Next we see if
// that child has an identical parent to this one.
auto &use_map = number == -1 ? leaves : entries[number]->uses;
auto p = use_map.emplace(new_e, (int)entries.size());
auto iter = p.first;
bool novel = p.second;
if (novel) {
// This is a never-before-seen Expr
number = (int)entries.size();
iter->second = number;
entries.emplace_back(new Entry(new_e));
} else {
// This child already has a syntactically-equal parent
number = iter->second;
new_e = entries[number]->expr;
}
// Memorize this numbering for the old and new forms of this Expr
shallow_numbering[e] = number;
output_numbering[new_e] = number;
return new_e;
}
};
/** Fill in the use counts in a global value numbering. */
class ComputeUseCounts : public IRGraphVisitor {
GVN &gvn;
bool lift_all;
public:
ComputeUseCounts(GVN &g, bool l)
: gvn(g), lift_all(l) {
}
using IRGraphVisitor::include;
using IRGraphVisitor::visit;
void include(const Expr &e) override {
// If it's not the sort of thing we want to extract as a let,
// just use the generic visitor to increment use counts for
// the children.
debug(4) << "Include: " << e
<< "; should extract: " << should_extract(e, lift_all) << "\n";
if (!should_extract(e, lift_all)) {
e.accept(this);
return;
}
// Find this thing's number.
auto iter = gvn.output_numbering.find(e);
if (iter != gvn.output_numbering.end()) {
gvn.entries[iter->second]->use_count++;
} else {
internal_error << "Expr not in shallow numbering: " << e << "\n";
}
// Visit the children if we haven't been here before.
IRGraphVisitor::include(e);
}
};
/** Rebuild an expression using a map of replacements. Works on graphs without exploding. */
class Replacer : public IRGraphMutator {
public:
Replacer() = default;
Replacer(const map<Expr, Expr, ExprCompare> &r)
: IRGraphMutator() {
expr_replacements = r;
}
void erase(const Expr &e) {
expr_replacements.erase(e);
}
};
class RemoveLets : public IRGraphMutator {
using IRGraphMutator::visit;
Scope<Expr> scope;
Expr visit(const Variable *op) override {
if (const Expr *e = scope.find(op->name)) {
return *e;
} else {
return op;
}
}
Expr visit(const Let *op) override {
Expr new_value = mutate(op->value);
// When we enter a let, we invalidate all cached mutations
// with values that reference this var due to shadowing. When
// we leave a let, we similarly invalidate any cached
// mutations we learned on the inside that reference the var.
// A blunt way to handle this is to temporarily invalidate
// *all* mutations, so we never see the same Expr node
// on the inside and outside of a Let.
decltype(expr_replacements) tmp;
tmp.swap(expr_replacements);
ScopedBinding<Expr> bind(scope, op->name, new_value);
auto result = mutate(op->body);
tmp.swap(expr_replacements);
return result;
}
};
class CSEEveryExprInStmt : public IRMutator {
bool lift_all;
using IRMutator::visit;
Stmt visit(const Store *op) override {
// It's important to do CSE jointly on the index and value in
// a store to stop:
// f[x] = f[x] + y
// from turning into
// f[x] = f[z] + y
// due to the two equal x's indices being CSE'd differently due to the presence of y.
Expr dummy = Call::make(Int(32), Call::bundle, {op->value, op->index}, Call::PureIntrinsic);
dummy = common_subexpression_elimination(dummy, lift_all);
vector<pair<string, Expr>> lets;
while (const Let *let = dummy.as<Let>()) {
lets.emplace_back(let->name, let->value);
dummy = let->body;
}
const Call *bundle = Call::as_intrinsic(dummy, {Call::bundle});
internal_assert(bundle && bundle->args.size() == 2);
Stmt s = Store::make(op->name, bundle->args[0], bundle->args[1],
op->param, mutate(op->predicate), op->alignment);
for (auto it = lets.rbegin(); it != lets.rend(); it++) {
s = LetStmt::make(it->first, it->second, s);
}
return s;
}
public:
using IRMutator::mutate;
Expr mutate(const Expr &e) override {
return common_subexpression_elimination(e, lift_all);
}
CSEEveryExprInStmt(bool l)
: lift_all(l) {
}
};
} // namespace
Expr common_subexpression_elimination(const Expr &e_in, bool lift_all) {
Expr e = e_in;
// Early-out for trivial cases.
if (is_const(e) || e.as<Variable>()) {
return e;
}
debug(4) << "\n\n\nInput to CSE " << e << "\n";
e = RemoveLets().mutate(e);
debug(4) << "After removing lets: " << e << "\n";
// CSE is run on unsanitized Exprs from the user, and may contain Vars with
// the same name as the temporaries we intend to introduce. Find any such
// Vars so that we know not to use those names.
class UniqueNameProvider : public IRGraphVisitor {
using IRGraphVisitor::visit;
const char prefix = 't'; // Annoyingly, this can't be static because this is a local class.
void visit(const Variable *op) override {
// It would be legal to just add all names found to the tracked set,
// but because we know the form of the new names we're going to
// introduce, we can save some time by only adding names that could
// plausibly collide. In the vast majority of cases, this check will
// result in the set being empty.
if (op->name.size() > 1 &&
op->name[0] == prefix &&
isdigit(op->name[1])) {
vars.insert(op->name);
}
}
std::set<string> vars;
public:
string make_unique_name() {
string name;
do {
name = unique_name(prefix);
} while (vars.count(name));
return name;
}
} namer;
e.accept(&namer);
GVN gvn;
e = gvn.mutate(e);
ComputeUseCounts count_uses(gvn, lift_all);
count_uses.include(e);
debug(4) << "Canonical form without lets " << e << "\n";
// Figure out which ones we'll pull out as lets and variables.
vector<pair<string, Expr>> lets;
vector<Expr> new_version(gvn.entries.size());
map<Expr, Expr, ExprCompare> replacements;
for (size_t i = 0; i < gvn.entries.size(); i++) {
const auto &e = gvn.entries[i];
if (e->use_count > 1) {
string name = namer.make_unique_name();
lets.emplace_back(name, e->expr);
// Point references to this expr to the variable instead.
replacements[e->expr] = Variable::make(e->expr.type(), name);
}
debug(4) << i << ": " << e->expr << ", " << e->use_count << "\n";
}
// Rebuild the expr to include references to the variables:
Replacer replacer(replacements);
e = replacer.mutate(e);
debug(4) << "With variables " << e << "\n";
// Wrap the final expr in the lets.
for (size_t i = lets.size(); i > 0; i--) {
Expr value = lets[i - 1].second;
// Drop this variable as an acceptable replacement for this expr.
replacer.erase(value);
// Use containing lets in the value.
value = replacer.mutate(lets[i - 1].second);
e = Let::make(lets[i - 1].first, value, e);
}
debug(4) << "With lets: " << e << "\n";
return e;
}
Stmt common_subexpression_elimination(const Stmt &s, bool lift_all) {
return CSEEveryExprInStmt(lift_all).mutate(s);
}
// Testing code.
namespace {
// Normalize all names in an expr so that expr compares can be done
// without worrying about mere name differences.
class NormalizeVarNames : public IRMutator {
int counter = 0;
map<string, string> new_names;
using IRMutator::visit;
Expr visit(const Variable *var) override {
map<string, string>::iterator iter = new_names.find(var->name);
if (iter == new_names.end()) {
return var;
} else {
return Variable::make(var->type, iter->second);
}
}
Expr visit(const Let *let) override {
string new_name = "t" + std::to_string(counter++);
new_names[let->name] = new_name;
Expr value = mutate(let->value);
Expr body = mutate(let->body);
return Let::make(new_name, value, body);
}
public:
NormalizeVarNames() = default;
};
void check(const Expr &in, const Expr &correct) {
Expr result = common_subexpression_elimination(in);
NormalizeVarNames n;
result = n.mutate(result);
internal_assert(equal(result, correct))
<< "Incorrect CSE:\n"
<< in
<< "\nbecame:\n"
<< result
<< "\ninstead of:\n"
<< correct << "\n";
}
// Construct a nested block of lets. Variables of the form "tn" refer
// to expr n in the vector.
Expr ssa_block(vector<Expr> exprs) {
Expr e = exprs.back();
for (size_t i = exprs.size() - 1; i > 0; i--) {
string name = "t" + std::to_string(i - 1);
e = Let::make(name, exprs[i - 1], e);
}
return e;
}
} // namespace
void cse_test() {
Expr x = Variable::make(Int(32), "x");
Expr y = Variable::make(Int(32), "y");
Expr t[32], tf[32];
for (int i = 0; i < 32; i++) {
t[i] = Variable::make(Int(32), "t" + std::to_string(i));
tf[i] = Variable::make(Float(32), "t" + std::to_string(i));
}
Expr e, correct;
// This is fine as-is.
e = ssa_block({sin(x), tf[0] * tf[0]});
check(e, e);
// Test a simple case.
e = ((x * x + x) * (x * x + x)) + x * x;
e += e;
correct = ssa_block({x * x, // x*x
t[0] + x, // x*x + x
t[1] * t[1] + t[0], // (x*x + x)*(x*x + x) + x*x
t[2] + t[2]});
check(e, correct);
// Check for idempotence (also checks a case with lets)
check(correct, correct);
// Check a case with redundant lets
e = ssa_block({x * x,
x * x,
t[0] / t[1],
t[1] / t[1],
t[2] % t[3],
(t[4] + x * x) + x * x});
correct = ssa_block({x * x,
t[0] / t[0],
(t[1] % t[1] + t[0]) + t[0]});
check(e, correct);
// Check a case with nested lets with shared subexpressions
// between the lets, and repeated names.
Expr e1 = ssa_block({x * x, // a = x*x
t[0] + x, // b = a + x
t[1] * t[1] * t[0]}); // c = b * b * a
Expr e2 = ssa_block({x * x, // a again
t[0] - x, // d = a - x
t[1] * t[1] * t[0]}); // e = d * d * a
e = ssa_block({e1 + x * x, // f = c + a
e1 + e2, // g = c + e
t[0] + t[0] * t[1]}); // h = f + f * g
correct = ssa_block({x * x, // t0 = a = x*x
t[0] + x, // t1 = b = a + x = t0 + x
t[1] * t[1] * t[0], // t2 = c = b * b * a = t1 * t1 * t0
t[2] + t[0], // t3 = f = c + a = t2 + t0
t[0] - x, // t4 = d = a - x = t0 - x
t[3] + t[3] * (t[2] + t[4] * t[4] * t[0])}); // h (with g substituted in)
check(e, correct);
// Test it scales OK.
e = x;
for (int i = 0; i < 100; i++) {
e = e * e + e + i;
e = e * e - e * i;
}
Expr result = common_subexpression_elimination(e);
{
Expr pred = x * x + y * y > 0;
Expr index = select(x * x + y * y > 0, x * x + y * y + 2, x * x + y * y + 10);
Expr load = Load::make(Int(32), "buf", index, Buffer<>(), Parameter(), const_true(), ModulusRemainder());
Expr pred_load = Load::make(Int(32), "buf", index, Buffer<>(), Parameter(), pred, ModulusRemainder());
e = select(x * y > 10, x * y + 2, x * y + 3 + load) + pred_load;
Expr t2 = Variable::make(Bool(), "t2");
Expr cse_load = Load::make(Int(32), "buf", t[3], Buffer<>(), Parameter(), const_true(), ModulusRemainder());
Expr cse_pred_load = Load::make(Int(32), "buf", t[3], Buffer<>(), Parameter(), t2, ModulusRemainder());
correct = ssa_block({x * y,
x * x + y * y,
t[1] > 0,
select(t2, t[1] + 2, t[1] + 10),
select(t[0] > 10, t[0] + 2, t[0] + 3 + cse_load) + cse_pred_load});
check(e, correct);
}
{
Expr pred = x * x + y * y > 0;
Expr index = select(x * x + y * y > 0, x * x + y * y + 2, x * x + y * y + 10);
Expr load = Load::make(Int(32), "buf", index, Buffer<>(), Parameter(), const_true(), ModulusRemainder());
Expr pred_load = Load::make(Int(32), "buf", index, Buffer<>(), Parameter(), pred, ModulusRemainder());
e = select(x * y > 10, x * y + 2, x * y + 3 + pred_load) + pred_load;
Expr t2 = Variable::make(Bool(), "t2");
Expr cse_load = Load::make(Int(32), "buf", select(t2, t[1] + 2, t[1] + 10), Buffer<>(), Parameter(), const_true(), ModulusRemainder());
Expr cse_pred_load = Load::make(Int(32), "buf", select(t2, t[1] + 2, t[1] + 10), Buffer<>(), Parameter(), t2, ModulusRemainder());
correct = ssa_block({x * y,
x * x + y * y,
t[1] > 0,
cse_pred_load,
select(t[0] > 10, t[0] + 2, t[0] + 3 + t[3]) + t[3]});
check(e, correct);
}
{
Expr halide_func = Call::make(Int(32), "dummy", {0}, Call::Halide);
e = halide_func * halide_func;
Expr t0 = Variable::make(halide_func.type(), "t0");
// It's okay to CSE Halide call within an expr
correct = Let::make("t0", halide_func, t0 * t0);
check(e, correct);
}
debug(0) << "common_subexpression_elimination test passed\n";
}
} // namespace Internal
} // namespace Halide