-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFour_Minute_NN.py
68 lines (52 loc) · 1.34 KB
/
Four_Minute_NN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
'''From Siraj's Video
https://www.youtube.com/watch?v=h3l4qz76JhQ
April 7, 2019
'''
import numpy as np
def nonLin(x,deriv = False):
'''The Sigmoid Activation Function?'''
if deriv == True:
return x*(1-x)
return 1/(1+np.exp(-x))
#input data
X = np.array([[0,0,1],
[0,1,1],
[1,0,1],
[1,1,1]])
#output data
y = np.array([[0],
[1],
[1],
[0]])
np.random.seed(1)
#synapses
syn0 = 2*np.random.random((3,4)) - 1
syn1 = 2*np.random.random((4,1)) - 1
#training step
for j in range(60000):
l0 = X
l1 = nonLin(np.dot(l0,syn0))
l2 = nonLin(np.dot(l1,syn1))
l2_error = y - l2
if j % 10000 == 0:
# print("l1:",l1)
# print("l2:",l2)
print("Error:",np.mean(np.abs(l2_error)))
l2_delta = l2_error*nonLin(l2,True)
l1_error = l2_delta.dot(syn1.T)
l1_delta = l1_error * nonLin(l1,True)
#update weights
syn1 += l1.T.dot(l2_delta)
syn0 += l0.T.dot(l1_delta)
# print("l2_delta:",l2_delta)
# print("l1_error:",l1_error)
# print("l2_error:",l2_error)
# print('l1_delta:',l1_delta)
# print("syn1:",syn1)
# print("syn0:",syn0)
#
# print('*******')
# print("Loop #",j)
# print()
print("Output after training")
print(l2)