forked from scikit-learn-contrib/imbalanced-learn
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbase.py
235 lines (177 loc) · 7.08 KB
/
base.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
"""Base class for sampling"""
# Authors: Guillaume Lemaitre <g.lemaitre58@gmail.com>
# Christos Aridas
# License: MIT
import warnings
from abc import ABCMeta, abstractmethod
import numpy as np
from sklearn.base import BaseEstimator
from sklearn.preprocessing import label_binarize
from sklearn.utils import check_X_y
from sklearn.utils.multiclass import check_classification_targets
from .utils import check_sampling_strategy, check_target_type
from .utils.deprecation import deprecate_parameter
class SamplerMixin(BaseEstimator, metaclass=ABCMeta):
"""Mixin class for samplers with abstract method.
Warning: This class should not be used directly. Use the derive classes
instead.
"""
_estimator_type = 'sampler'
def fit(self, X, y):
"""Check inputs and statistics of the sampler.
You should use ``fit_resample`` in all cases.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples, n_features)
Data array.
y : array-like, shape (n_samples,)
Target array.
Returns
-------
self : object
Return the instance itself.
"""
self._deprecate_ratio()
X, y, _ = self._check_X_y(X, y)
self.sampling_strategy_ = check_sampling_strategy(
self.sampling_strategy, y, self._sampling_type)
return self
def fit_resample(self, X, y):
"""Resample the dataset.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples, n_features)
Matrix containing the data which have to be sampled.
y : array-like, shape (n_samples,)
Corresponding label for each sample in X.
Returns
-------
X_resampled : {array-like, sparse matrix}, shape \
(n_samples_new, n_features)
The array containing the resampled data.
y_resampled : array-like, shape (n_samples_new,)
The corresponding label of `X_resampled`.
"""
self._deprecate_ratio()
check_classification_targets(y)
X, y, binarize_y = self._check_X_y(X, y)
self.sampling_strategy_ = check_sampling_strategy(
self.sampling_strategy, y, self._sampling_type)
output = self._fit_resample(X, y)
if binarize_y:
y_sampled = label_binarize(output[1], np.unique(y))
if len(output) == 2:
return output[0], y_sampled
return output[0], y_sampled, output[2]
return output
# define an alias for back-compatibility
fit_sample = fit_resample
@abstractmethod
def _fit_resample(self, X, y):
"""Base method defined in each sampler to defined the sampling
strategy.
Parameters
----------
X : {array-like, sparse matrix}, shape (n_samples, n_features)
Matrix containing the data which have to be sampled.
y : array-like, shape (n_samples,)
Corresponding label for each sample in X.
Returns
-------
X_resampled : {ndarray, sparse matrix}, shape \
(n_samples_new, n_features)
The array containing the resampled data.
y_resampled : ndarray, shape (n_samples_new,)
The corresponding label of `X_resampled`
"""
pass
class BaseSampler(SamplerMixin):
"""Base class for sampling algorithms.
Warning: This class should not be used directly. Use the derive classes
instead.
"""
def __init__(self, sampling_strategy='auto', ratio=None):
self.sampling_strategy = sampling_strategy
# FIXME: remove in 0.6
self.ratio = ratio
@staticmethod
def _check_X_y(X, y):
y, binarize_y = check_target_type(y, indicate_one_vs_all=True)
X, y = check_X_y(X, y, accept_sparse=['csr', 'csc'])
return X, y, binarize_y
@property
def ratio_(self):
# FIXME: remove in 0.6
warnings.warn("'ratio' and 'ratio_' are deprecated. Use "
"'sampling_strategy' and 'sampling_strategy_' instead.",
DeprecationWarning)
return self.sampling_strategy_
def _deprecate_ratio(self):
# both ratio and sampling_strategy should not be set
if self.ratio is not None:
deprecate_parameter(self, '0.4', 'ratio', 'sampling_strategy')
self.sampling_strategy = self.ratio
def _identity(X, y):
return X, y
class FunctionSampler(BaseSampler):
"""Construct a sampler from calling an arbitrary callable.
Read more in the :ref:`User Guide <function_sampler>`.
Parameters
----------
func : callable or None,
The callable to use for the transformation. This will be passed the
same arguments as transform, with args and kwargs forwarded. If func is
None, then func will be the identity function.
accept_sparse : bool, optional (default=True)
Whether sparse input are supported. By default, sparse inputs are
supported.
kw_args : dict, optional (default=None)
The keyword argument expected by ``func``.
Notes
-----
See
:ref:`sphx_glr_auto_examples_plot_outlier_rejections.py`
Examples
--------
>>> import numpy as np
>>> from sklearn.datasets import make_classification
>>> from imblearn import FunctionSampler
>>> X, y = make_classification(n_classes=2, class_sep=2,
... weights=[0.1, 0.9], n_informative=3, n_redundant=1, flip_y=0,
... n_features=20, n_clusters_per_class=1, n_samples=1000, random_state=10)
We can create to select only the first ten samples for instance.
>>> def func(X, y):
... return X[:10], y[:10]
>>> sampler = FunctionSampler(func=func)
>>> X_res, y_res = sampler.fit_resample(X, y)
>>> np.all(X_res == X[:10])
True
>>> np.all(y_res == y[:10])
True
We can also create a specific function which take some arguments.
>>> from collections import Counter
>>> from imblearn.under_sampling import RandomUnderSampler
>>> def func(X, y, sampling_strategy, random_state):
... return RandomUnderSampler(
... sampling_strategy=sampling_strategy,
... random_state=random_state).fit_resample(X, y)
>>> sampler = FunctionSampler(func=func,
... kw_args={'sampling_strategy': 'auto',
... 'random_state': 0})
>>> X_res, y_res = sampler.fit_resample(X, y)
>>> print('Resampled dataset shape {}'.format(
... sorted(Counter(y_res).items())))
Resampled dataset shape [(0, 100), (1, 100)]
"""
_sampling_type = 'bypass'
def __init__(self, func=None, accept_sparse=True, kw_args=None):
super().__init__()
self.func = func
self.accept_sparse = accept_sparse
self.kw_args = kw_args
def _fit_resample(self, X, y):
X, y = check_X_y(X, y, accept_sparse=['csr', 'csc']
if self.accept_sparse else False)
func = _identity if self.func is None else self.func
output = func(X, y, **(self.kw_args if self.kw_args else {}))
return output