Skip to content

A collection of real-time multi-camera multi-object SOTA trackers using YOLOv5

License

Notifications You must be signed in to change notification settings

h-montazer1998/Yolov5_StrongSORT_OSNet

Repository files navigation

Yolov5 + Deep Sort with PyTorch


CI CPU testing
Open In Colab

Introduction

This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of object detection architectures and models pretrained on the COCO dataset, are passed to a Deep Sort algorithm which tracks the objects. It can track any object that your Yolov5 model was trained to detect.

Tutorials

Before you run the tracker

  1. Clone the repository recursively:

git clone --recurse-submodules https://github.com/mikel-brostrom/Yolov5_DeepSort_Pytorch.git

If you already cloned and forgot to use --recurse-submodules you can run git submodule update --init

  1. Make sure that you fulfill all the requirements: Python 3.8 or later with all requirements.txt dependencies installed, including torch>=1.7. To install, run:

pip install -r requirements.txt

Tracking sources

Tracking can be run on most video formats

python3 track.py --source ... --show-vid  # show live inference results as well
  • Video: --source file.mp4
  • Webcam: --source 0
  • RTSP stream: --source rtsp://170.93.143.139/rtplive/470011e600ef003a004ee33696235daa
  • HTTP stream: --source http://wmccpinetop.axiscam.net/mjpg/video.mjpg

Select a Yolov5 family model

There is a clear trade-off between model inference speed and accuracy. In order to make it possible to fulfill your inference speed/accuracy needs you can select a Yolov5 family model for automatic download

python3 track.py --source 0 --yolo_weights yolov5s.pt --img 640  # smallest yolov5 family model
python3 track.py --source 0 --yolo_weights yolov5x6.pt --img 1280  # largest yolov5 family model

Filter tracked classes

By default the tracker tracks all MS COCO classes.

If you only want to track persons I recommend you to get these weights for increased performance

python3 track.py --source 0 --yolo_weights yolov5/weights/crowdhuman_yolov5m.pt --classes 0  # tracks persons, only

If you want to track a subset of the MS COCO classes, add their corresponding index after the classes flag

python3 track.py --source 0 --yolo_weights yolov5s.pt --classes 16 17  # tracks cats and dogs, only

Here is a list of all the possible objects that a Yolov5 model trained on MS COCO can detect. Notice that the indexing for the classes in this repo starts at zero.

MOT compliant results

Can be saved to inference/output by

python3 track.py --source ... --save-txt

Cite

If you find this project useful in your research, please consider cite:

@misc{yolov5deepsort2020,
    title={Real-time multi-object tracker using YOLOv5 and deep sort},
    author={Mikel Broström},
    howpublished = {\url{https://github.com/mikel-brostrom/Yolov5_DeepSort_Pytorch}},
    year={2020}
}

Other information

For more detailed information about the algorithms and their corresponding lisences used in this project access their official github implementations.

About

A collection of real-time multi-camera multi-object SOTA trackers using YOLOv5

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%