Skip to content

Latest commit

 

History

History
117 lines (82 loc) · 5.03 KB

README.md

File metadata and controls

117 lines (82 loc) · 5.03 KB

基于机器学习的老司机车牌自动推荐系统

Bustag 是一个基于 python 异步爬虫框架开发aspider的自动车牌推荐系统, 系统原理为定时爬取最新车牌信息, 然后可以对车牌进行打标(标示是否喜欢), 打标车牌到一定数量可以进行训练并生成模型, 以后就可以基于此模型自动对下载的车牌进行预测是否喜欢, 可以过滤掉大量不喜欢的车牌, 节约时间

系统功能

  • 自动抓取最新车牌信息, 抓取频率可以自定义
  • 车牌打标功能
  • 模型训练, 基于当前所有打标数据训练模型
  • 有了模型后, 自动预测判断是否喜欢
  • Docker 镜像一键运行, 省去新手配置项目的麻烦
  • 项目访问地址: localhost:8080

系统截图(隐藏了左边封面图片)

  • 推荐页面

  • 打标页面

  • 其他页面

如何运行项目

  • 懂 python 开发的可以 clone 本项目, 建立一个虚拟环境并按照 requirements.txt 的 python 包后, 在项目根目录下 直接运行
python bustag/app/index.py

或者安装了gunicorn
gunicorn bustag.app.index:app --bind='0.0.0.0:8080'
  • 使用 docker 运行(推荐)

    1. 建立一个目录, 如 bustag, 然后在该目录下建一个子目录 data, data 目录用于保存配置文件以及下载数据的数据库
    2. 在 data 下需要建立一个文件, config.ini, 该文件用于设置爬取的初始地址, 以及每次下载的最大数量
    3. 运行命令
    linux, mac
      docker run --rm -d -v $(pwd)/data:/app/data -p 8080:8080 gxtrobot/bustag-app
    
      windows powershell
      docker run --rm -it -v ${PWD}/data:/app/data -p 8080:8080 gxtrobot/bustag-app
    
    

如何使用项目

请按照以下顺序

  1. 到打标页面进行打标, 达到一定数量(喜欢+不喜欢), 比如 300
  2. 到其他页面训练模型
  3. 坐等系统自动推荐
  4. 在推荐页面进行确认(确认过的数据转为打标数据)
  5. 积累更多打标数据, 再次训练模型, 打标数据越多模型效果越好

data 目录文件说明

|____bus.db
|____config.ini
|____crontab.txt
|____model
| |____ label_binarizer.pkl
| |____model.pkl

其他问题

  1. 改变自动下载的频率 系统默认为每 30 分钟下载一次, 如果需要自定义可以在 data 下建立一个crontab.txt文件, 该文件是基于 linux crontab 执行, ,具体可以看wiki
*/30 * * * * /app/docker/run_download.sh >> /var/log/bustag.log 2>&1
  1. 改变下载初始 url 因为该 url 会经常改变, 所有系统的 config.ini -> download -> root_path 定义了初始 url, 可以根据需要改变

  2. 是否可以使用代理 目前系统还没加入代理功能, 不过可以在 docker 设置代理访问

  3. 下载数量多少合适 鉴于爬虫的稳定性, 不建议每次下载太多, 也可能会给 bus 服务器带来压力, 如果需要, 初次使用可以加大到 1000, 这样可以下载多点初始数据用于打标, 后面可以改为 300

  4. 模型效果如何 经过一些测试, 最终使用了 KNN 模型, 效果的话谈不上非常好, 在准确率上还可以, 不过召回率相对低一些, 也就是说推荐的准确率相对高点, 但是会漏掉一些喜欢的数据. 所以, 鉴于定期对推荐数据进行确认, 经过确认后, 推荐数据转为打标数据, 然后重新训练,打标数据越多效果越好

  5. 要多少打标数据才能训练模型 建议至少达到 300 打标数据(包括喜欢, 不喜欢), 如何尝试训练模型, 并查看模型效果值, 如不满意可以增加训练数据并重新训练

  6. 模型用了什么数据训练 模型目前主要使用了各种标签数据, 比如影片分类, 女优名等等, 目前没有使用到标题

  7. 如何改变服务器运行端口 服务器默认为 8080 端口, 如果需要改变, 可以修改启动 docker 容器命令, 比如 8000

修改为8000端口, 注意:后面的8080不要变, 然后可以通过localhost:8000访问

docker run --rm -d -v $(pwd)/data:/app/data -p 8000:8080 gxtrobot/bustag-app
  1. 如何备份数据库 系统使用的数据库保存在 data 目录下的 bus.db, 如果有需要可以将此文件拷贝一份作为备份, 比如在打标测试模型时, 如果不想使用当前打标数据, 可以将数据库恢复到原来的版本 该数据库为 sqlite 格式, 可以直接使用软件打开, 比如 DB Browser for Sqlite, 该软件支持多平台