-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfitness_models_cv.py
332 lines (252 loc) · 15.2 KB
/
fitness_models_cv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import argparse
from functools import reduce
import json
import logging
import os
from pprint import pformat
import re
import sys
import typing
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
sys.path.append(os.path.join(os.path.dirname(__file__), '..'))
sys.path.append(os.path.join(os.path.dirname(__file__), '../src'))
import ast_printer # for logging
import ast_parser # for logging
from src import fitness_energy_utils as utils
from src import latest_model_paths
import fitness_features_by_category
class LevelFilter(logging.Filter):
def __init__(self, level, name: str = ""):
self.level = level
def filter(self, record):
return record.levelno == self.level
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
logging_handler_out = logging.StreamHandler(sys.stdout)
logging_handler_out.setLevel(logging.DEBUG)
logging_handler_out.addFilter(LevelFilter(logging.INFO))
logger.addHandler(logging_handler_out)
logging_handler_err = logging.StreamHandler(sys.stderr)
logging_handler_err.setLevel(logging.WARNING)
logger.addHandler(logging_handler_err)
parser = argparse.ArgumentParser()
parser.add_argument('--fitness-features-file', type=str, default=latest_model_paths.LATEST_FITNESS_FEATURES)
parser.add_argument('--output-name', type=str, required=True)
parser.add_argument('--output-folder', type=str, default='./data/fitness_cv')
parser.add_argument('--output-relative-path', type=str, default='.')
parser.add_argument('--feature-score-threshold', type=float, default=-0.01)
parser.add_argument('--device', type=str, required=False)
parser.add_argument('--beta', type=float, default=1.0)
parser.add_argument('--random-seed', type=int, default=utils.DEFAULT_RANDOM_SEED)
parser.add_argument('--ngram-scores-to-remove', type=str, nargs='+', default=[])
parser.add_argument('--full-ngram-score-only', action='store_true')
LOSS_FUNCTIONS = [x for x in dir(utils) if 'loss' in x]
parser.add_argument('--ignore-features', type=str, nargs='+', default=[])
parser.add_argument('--omit-feature-categories', type=str, nargs='+', default=[])
parser.add_argument('--default-loss-function', type=str, choices=LOSS_FUNCTIONS, default='fitness_softmin_loss')
parser.add_argument('--output-activation', type=str, default=None)
parser.add_argument('--output-scaling', type=float, default=1.0)
parser.add_argument('--cv-settings-json', type=str, default=os.path.join(os.path.dirname(__file__), 'fitness_cv_settings.json'))
parser.add_argument('--no-save-full-model', action='store_true')
parser.add_argument('--full-model-without-test', action='store_true')
DEFAULT_TRAIN_KWARGS_JSON_KEY = 'train_kwargs'
parser.add_argument('--train-kwargs-json-key', type=str, default=DEFAULT_TRAIN_KWARGS_JSON_KEY)
DEFAULT_PARAM_GRID_JSON_KEY = 'param_grid'
parser.add_argument('--param-grid-json-key', type=str, default=DEFAULT_PARAM_GRID_JSON_KEY)
CV_KWARGS_JSON_KEY = 'cv_kwargs'
parser.add_argument('--cv-kwargs-json-key', type=str, default=CV_KWARGS_JSON_KEY)
DEFAULT_TOP_FEATURES_K = 30
parser.add_argument('--top-features-k', type=int, default=DEFAULT_TOP_FEATURES_K)
DEFAULT_TOP_FEATURE_MIN_MAGNITUDE = 0.1
parser.add_argument('--top-feature-min-magnitude', type=float, default=DEFAULT_TOP_FEATURE_MIN_MAGNITUDE)
NGRAM_SCORE_TYPES = ('full', 'setup', 'constraints', 'terminal', 'scoring')
DEFAULT_IGNORE_FEATURES = [
"predicate_found_in_data_all", "predicate_found_in_data_setup_all",
"predicate_found_in_data_constraints_all", "predicate_found_in_data_small_logicals_all"
]
def get_features_by_abs_diff_threshold(diffs: pd.Series, score_threshold: float,
ngram_scores_to_remove: typing.Optional[typing.List[str]] = None,
full_ngram_score_only: bool = False) -> typing.List[str]:
if ngram_scores_to_remove is None:
ngram_scores_to_remove = []
if full_ngram_score_only:
ngram_scores_to_remove = [x for x in NGRAM_SCORE_TYPES if x != 'full']
feature_columns = list(diffs[diffs >= score_threshold].index)
for score_type in NGRAM_SCORE_TYPES:
col_names = sorted([c for c in feature_columns if c.startswith(f'ast_ngram_{score_type}') and c.endswith('_score')])
if score_type not in ngram_scores_to_remove:
col_names = col_names[:-1]
for col in col_names:
feature_columns.remove(col)
return feature_columns
def get_feature_columns(df: pd.DataFrame, score_threshold: float,
ngram_scores_to_remove: typing.Optional[typing.List[str]] = None,
full_ngram_score_only: bool = False) -> typing.List[str]:
mean_features_by_real = df[['real'] + [c for c in df.columns if c not in utils.NON_FEATURE_COLUMNS]].groupby('real').mean()
feature_diffs = mean_features_by_real.loc[1] - mean_features_by_real.loc[0]
abs_diffs = feature_diffs.abs()
return get_features_by_abs_diff_threshold(abs_diffs, score_threshold, ngram_scores_to_remove, full_ngram_score_only) # type: ignore
def main(args: argparse.Namespace):
omit_categories_str = '_'.join(args.omit_feature_categories)
if omit_categories_str:
args.output_name = f'{args.output_name}_omit_categories_{omit_categories_str}'
if args.full_ngram_score_only:
args.output_name += '_full_ngram_only'
args.output_name = f'{args.output_name}_seed_{args.random_seed}'
model_name = args.output_name
if 'fitness_sweep_' in model_name:
model_name = model_name.replace('fitness_sweep_', '')
model_name = f'{utils.DEFAULT_SAVE_MODEL_NAME}_{model_name}'
logger.info(f'Starting fitness CV for {model_name}')
logger.info(f'Loading fitness data from {args.fitness_features_file}')
fitness_df = utils.load_fitness_data(args.fitness_features_file)
logger.info(f'Unique source files: {fitness_df.src_file.unique()}')
logger.info(f'Dataframe shape: {fitness_df.shape}')
original_game_counts = fitness_df.groupby('original_game_name').src_file.count().value_counts()
if len(original_game_counts) == 1:
logger.debug(f'All original games have {original_game_counts.index[0] - 1} regrowths') # type: ignore
else:
raise ValueError(f'Some original games have different numbers of regrowths: {original_game_counts}')
feature_columns = get_feature_columns(fitness_df, args.feature_score_threshold, args.ngram_scores_to_remove, args.full_ngram_score_only)
with open(args.cv_settings_json, 'r') as f:
cv_settings = json.load(f)
logger.debug(f'CV settings:\n{pformat(cv_settings)}')
ignore_features = set(args.ignore_features)
ignore_features.update(DEFAULT_IGNORE_FEATURES)
if ignore_features:
remove_features = [c for c in feature_columns if c in ignore_features]
if len(remove_features) == 0:
logger.warning(f'No features found in ignore_features: {ignore_features}')
else:
logger.info(f'Ignoring features: {remove_features}')
for feature in remove_features:
feature_columns.remove(feature)
include_feature_categories = list(fitness_features_by_category.FEATURE_CATEGORIES.keys())
if args.omit_feature_categories:
for cat in args.omit_feature_categories:
if cat not in include_feature_categories:
raise ValueError(f'Unknown feature category: {cat}, valid categories: {include_feature_categories}')
include_feature_categories.remove(cat)
logger.info(f'Including feature categories: {include_feature_categories}')
included_features = set()
for category in include_feature_categories:
for feature in fitness_features_by_category.FEATURE_CATEGORIES[category]:
if isinstance(feature, re.Pattern):
included_features.update([f for f in feature_columns if feature.match(f)])
else:
included_features.add(feature)
feature_columns = [c for c in feature_columns if c in included_features]
logger.info(f'Fitting models with {len(feature_columns)} features')
logger.info(f'Using param grid key "{args.param_grid_json_key}", train kwargs key "{args.train_kwargs_json_key}", cv kwargs key "{args.cv_kwargs_json_key}"')
param_grid = cv_settings[args.param_grid_json_key]
cv_kwargs = cv_settings[args.cv_kwargs_json_key]
train_kwargs = cv_settings[args.train_kwargs_json_key]
if 'beta' not in train_kwargs and 'fitness__beta' not in param_grid:
train_kwargs['beta'] = args.beta
if 'device' in train_kwargs:
train_kwargs['device'] = torch.device(train_kwargs['device'])
else:
train_kwargs['device'] = args.device
if 'regularizer' in train_kwargs:
if 'regularization_weight' not in train_kwargs and 'fitness__regularization_weight' not in param_grid:
raise ValueError('regularizer is specified but regularization_weight is not')
threshold = None
if 'regularization_threshold' in train_kwargs:
threshold = train_kwargs.pop('regularization_threshold')
train_kwargs['regularizer'] = utils.ModelRegularizer(train_kwargs['regularizer'], threshold)
if 'fitness__loss_function' in param_grid:
param_grid['fitness__loss_function'] = [getattr(utils, x) for x in param_grid['fitness__loss_function']]
elif 'loss_function' not in train_kwargs:
train_kwargs['loss_function'] = getattr(utils, args.default_loss_function)
scaler_kwargs = dict(passthrough=True)
output_activation = nn.Identity()
if args.output_activation is not None:
if args.output_activation == 'sigmoid':
output_activation = nn.Sigmoid()
elif args.output_activation == 'tanh':
output_activation = nn.Tanh()
else:
raise ValueError(f'Unknown output activation: {args.output_activation}')
model_kwargs = dict(output_activation=output_activation, output_scaling=args.output_scaling)
# scoring = utils.build_multiple_scoring_function(
# [utils.wrap_loss_function_to_metric(utils.fitness_sofmin_loss_positive_negative_split, dict(beta=args.beta), True), # type: ignore
# utils.evaluate_fitness_overall_ecdf, utils.evaluate_fitness_single_game_rank, utils.evaluate_fitness_single_game_min_rank,
# utils.wrap_loss_function_to_metric(utils.energy_of_negative_at_quantile, dict(quantile=0.01), True), # type: ignore
# utils.wrap_loss_function_to_metric(utils.energy_of_negative_at_quantile, dict(quantile=0.05), True), # type: ignore
# ],
# ['loss', 'overall_ecdf', 'single_game_rank', 'single_game_min_rank', 'energy_of_negative@1%', 'energy_of_negative@5%'],
# )
cv, (train_tensor, test_tensor), results = utils.model_fitting_experiment(
fitness_df,
param_grid, feature_columns=feature_columns,
scoring_function=utils.default_multiple_scoring,
verbose=1, scaler_kwargs=scaler_kwargs,
model_kwargs=model_kwargs, train_kwargs=train_kwargs, cv_kwargs=cv_kwargs,
random_seed=args.random_seed,
)
logger.info(f'Best params: {cv.best_params_}')
utils.visualize_cv_outputs(cv, train_tensor, test_tensor, results, notebook=False)
cv.scorer_ = None # type: ignore
cv.scoring = None # type: ignore
output_data = dict(cv=cv, train_tensor=train_tensor, test_tensor=test_tensor, results=results, feature_columns=feature_columns)
utils.save_data(output_data, folder=args.output_folder, name=args.output_name, relative_path=args.output_relative_path)
train_score_dict = _make_score_dict(cv, train_tensor, print_prefix='train real')
cv.best_estimator_.score_dict = train_score_dict # type: ignore
utils.save_model_and_feature_columns(cv, feature_columns, name=f'{model_name}_held_out', relative_path=args.output_relative_path, extra_data=dict(score_dict=train_score_dict))
if not args.no_save_full_model:
extra_data = {}
if not args.full_model_without_test:
logger.debug('Fitting full model with entire dataset (including test data)')
full_tensor = utils.df_to_tensor(fitness_df, feature_columns)
cv.best_estimator_['fitness'].train_kwargs['split_validation_from_train'] = False # type: ignore
cv.best_estimator_.fit(full_tensor) # type: ignore
print('Retrained model on full dataset results:')
print(utils.evaluate_trained_model(cv.best_estimator_, full_tensor, utils.default_multiple_scoring)) # type: ignore
score_dict = _make_score_dict(cv, full_tensor)
extra_data['score_dict'] = score_dict
cv.best_estimator_.score_dict = score_dict # type: ignore
weights = weights = cv.best_estimator_.named_steps['fitness'].model.fc1.weight.data.detach().squeeze()
top_features = torch.topk(weights, args.top_features_k)
bottom_features = torch.topk(weights, args.top_features_k, largest=False)
feature_lines = []
feature_lines.append('Features with largest negative weights (most predictive of real games):')
for i in range(args.top_features_k):
current_feature_value = bottom_features.values[i]
if current_feature_value.abs() < args.top_feature_min_magnitude:
break
feature_lines.append(f'{i+1}. {feature_columns[bottom_features.indices[i]]} ({current_feature_value:.4f})')
feature_lines.append('\nFeatures with largest positive weights (most predictive of fake games):')
for i in range(args.top_features_k):
current_feature_value = top_features.values[i]
if current_feature_value.abs() < args.top_feature_min_magnitude:
break
feature_lines.append(f'{i+1}. {feature_columns[top_features.indices[i]]} ({current_feature_value:.4f})')
print('\n'.join(feature_lines))
logger.debug('Saving full model')
utils.save_model_and_feature_columns(cv, feature_columns, name=model_name, relative_path=args.output_relative_path, extra_data=extra_data)
def _make_score_dict(cv_model, tensor, print_prefix: str = 'real'):
full_tensor_scores = cv_model.best_estimator_.transform(tensor).detach() # type: ignore
real_game_scores = full_tensor_scores[:, 0]
score_mean = real_game_scores.mean()
score_std = real_game_scores.std()
score_min = real_game_scores.min()
score_median = torch.median(real_game_scores)
score_max = real_game_scores.max()
print(f'{print_prefix.capitalize()} game scores: {score_mean:.4f} ± {score_std:.4f}, min = {score_min:.4f}, median = {score_median:.4f}, max = {score_max:.4f}')
negatives_scores = tensor[:, 1:].ravel()
negative_score_quantiles = torch.quantile(negatives_scores, torch.linspace(0, 1, 11)).tolist()
print(f'{print_prefix.capitalize()} negative quantiles: {negative_score_quantiles}')
print(torch.quantile(negatives_scores, 0.2))
return dict(mean=score_mean, std=score_std, min=score_min, median=score_median, max=score_max, negative_score_quantiles=negative_score_quantiles)
if __name__ == '__main__':
args = parser.parse_args()
if args.device is None:
args.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
else:
args.device = torch.device(args.device)
args_str = '\n'.join([f'{" " * 26}{k}: {v}' for k, v in vars(args).items()])
logger.debug(f'Shell arguments:\n{args_str}')
main(args)