-
Notifications
You must be signed in to change notification settings - Fork 25
/
train.py
266 lines (219 loc) · 12.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
"""
Copyright 2018 NAVER Corp.
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
3. Neither the names of Facebook, Deepmind Technologies, NYU, NEC Laboratories America
and IDIAP Research Institute nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.
"""
import argparse
import time
from datetime import datetime
import numpy as np
import random
import json
import logging
import torch
import os, sys
parentPath = os.path.abspath("..")
sys.path.insert(0, parentPath)# add parent folder to path so as to import common modules
from helper import timeSince, sent2indexes, indexes2sent, gData, gVar
import models, experiments, configs, data
from experiments import Metrics
from sample import evaluate
from tensorboardX import SummaryWriter # install tensorboardX (pip install tensorboardX) before importing this package
parser = argparse.ArgumentParser(description='DialogWAE Pytorch')
# Path Arguments
parser.add_argument('--data_path', type=str, default='./data/', help='location of the data corpus')
parser.add_argument('--dataset', type=str, default='SWDA', help='name of dataset. SWDA or DailyDial')
parser.add_argument('--model', type=str, default='DialogWAE_GMP', help='model name')
parser.add_argument('--expname', type=str, default='basic', help='experiment name, for disinguishing different parameter settings')
parser.add_argument('--visual', action='store_true', default=False, help='visualize training status in tensorboard')
parser.add_argument('--reload_from', type=int, default=-1, help='reload from a trained ephoch')
parser.add_argument('--gpu_id', type=int, default=0, help='GPU ID')
# Evaluation Arguments
parser.add_argument('--sample', action='store_true', help='sample when decoding for generation')
parser.add_argument('--log_every', type=int, default=100, help='interval to log training results')
parser.add_argument('--valid_every', type=int, default=400, help='interval to validation')
parser.add_argument('--eval_every', type=int, default=2, help='interval to evaluate on the validation set')
parser.add_argument('--seed', type=int, default=1111, help='random seed')
args = parser.parse_args()
print(vars(args))
# make output directory if it doesn't already exist
if not os.path.isdir('./output'):
os.makedirs('./output')
if not os.path.isdir('./output/{}'.format(args.model)):
os.makedirs('./output/{}'.format(args.model))
if not os.path.isdir('./output/{}/{}'.format(args.model, args.expname)):
os.makedirs('./output/{}/{}'.format(args.model, args.expname))
if not os.path.isdir('./output/{}/{}/{}'.format(args.model, args.expname, args.dataset)):
os.makedirs('./output/{}/{}/{}'.format(args.model, args.expname, args.dataset))
if not os.path.isdir('./output/{}/{}/{}/models'.format(args.model, args.expname, args.dataset)):
os.makedirs('./output/{}/{}/{}/models'.format(args.model, args.expname, args.dataset))
if not os.path.isdir('./output/{}/{}/{}/tmp_results'.format(args.model, args.expname, args.dataset)):
os.makedirs('./output/{}/{}/{}/tmp_results'.format(args.model, args.expname, args.dataset))
# save arguments
json.dump(vars(args), open('./output/{}/{}/{}/args.json'.format(args.model, args.expname, args.dataset), 'w'))
# LOG #
logger = logging.getLogger(__name__)
logging.basicConfig(level=logging.DEBUG, format="%(message)s")#,format="%(asctime)s: %(name)s: %(levelname)s: %(message)s")
fh = logging.FileHandler("./output/{}/{}/{}/logs.txt".format(args.model, args.expname, args.dataset))
# create file handler which logs even debug messages
logger.addHandler(fh)# add the handlers to the logger
# Set the random seed manually for reproducibility.
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
use_cuda = torch.cuda.is_available()
if use_cuda:
torch.cuda.set_device(args.gpu_id) # set gpu device
torch.cuda.manual_seed(args.seed)
def save_model(model, epoch):
print("Saving models")
torch.save(f='./output/{}/{}/{}/models/model_epo{}.pckl'.format(args.model, args.expname, args.dataset, epoch),obj=model)
def load_model(epoch):
print("Loading models")
model = torch.load(f='./output/{}/{}/{}/models/model_epo{}.pckl'.format(args.model, args.expname, args.dataset, epoch))
return model
config = getattr(configs, 'config_'+args.model)()
###############################################################################
# Load data
###############################################################################
data_path=args.data_path+args.dataset+'/'
#
corpus = getattr(data, args.dataset+'Corpus')(data_path, wordvec_path=args.data_path+'glove.twitter.27B.200d.txt', wordvec_dim=config['emb_size'])
dials = corpus.get_dialogs()
metas = corpus.get_metas()
train_dial, valid_dial, test_dial = dials.get("train"), dials.get("valid"), dials.get("test")
train_meta, valid_meta, test_meta = metas.get("train"), metas.get("valid"), metas.get("test")
train_loader = getattr(data, args.dataset+'DataLoader')("Train", train_dial, train_meta, config['maxlen'])
valid_loader = getattr(data, args.dataset+'DataLoader')("Valid", valid_dial, valid_meta, config['maxlen'])
test_loader = getattr(data, args.dataset+'DataLoader')("Test", test_dial, test_meta, config['maxlen'])
vocab = corpus.ivocab
ivocab = corpus.vocab
n_tokens = len(ivocab)
metrics=Metrics(corpus.word2vec)
print("Loaded data!")
###############################################################################
# Define the models
###############################################################################
model = getattr(models, args.model)(config, n_tokens) if args.reload_from<0 else load_model(args.reload_from)
if use_cuda:
model=model.cuda()
if corpus.word2vec is not None and args.reload_from<0:
print("Loaded word2vec")
model.embedder.weight.data.copy_(torch.from_numpy(corpus.word2vec))
model.embedder.weight.data[0].fill_(0)
tb_writer = SummaryWriter("./output/{}/{}/{}/logs/".format(args.model, args.expname, args.dataset)\
+datetime.now().strftime('%Y%m%d%H%M')) if args.visual else None
logger.info("Training...")
itr_global=1
start_epoch=1 if args.reload_from==-1 else args.reload_from+1
for epoch in range(start_epoch, config['epochs']+1):
epoch_start_time = time.time()
itr_start_time = time.time()
# shuffle (re-define) data between epochs
train_loader.epoch_init(config['batch_size'], config['diaglen'], 1, shuffle=True)
n_iters=train_loader.num_batch/max(1, config['n_iters_d'])
itr = 1
while True:# loop through all batches in training data
model.train()
loss_records=[]
batch = train_loader.next_batch()
if batch is None: # end of epoch
break
context, context_lens, utt_lens, floors,_,_,_,response,res_lens,_ = batch
context, utt_lens = context[:,:,1:], utt_lens-1 # remove the sos token in the context and reduce the context length
context, context_lens, utt_lens, floors, response, res_lens\
= gVar(context), gVar(context_lens), gVar(utt_lens), gData(floors), gVar(response), gVar(res_lens)
loss_AE = model.train_AE(context, context_lens, utt_lens, floors, response, res_lens)
loss_records.extend(loss_AE)
loss_G = model.train_G(context, context_lens, utt_lens, floors, response, res_lens)
loss_records.extend(loss_G)
for i in range(config['n_iters_d']):# train discriminator/critic
loss_D = model.train_D(context, context_lens, utt_lens, floors, response, res_lens)
if i==0:
loss_records.extend(loss_D)
if i==config['n_iters_d']-1:
break
batch = train_loader.next_batch()
if batch is None: # end of epoch
break
context, context_lens, utt_lens, floors,_,_,_,response,res_lens,_ = batch
context, utt_lens = context[:,:,1:], utt_lens-1 # remove the sos token in the context and reduce the context length
context, context_lens, utt_lens, floors, response, res_lens\
= gVar(context), gVar(context_lens), gVar(utt_lens), gData(floors), gVar(response), gVar(res_lens)
if itr % args.log_every == 0:
elapsed = time.time() - itr_start_time
log = '%s-%s|%s@gpu%d epo:[%d/%d] iter:[%d/%d] step_time:%ds elapsed:%s \n '\
%(args.model, args.expname, args.dataset, args.gpu_id, epoch, config['epochs'],
itr, n_iters, elapsed, timeSince(epoch_start_time,itr/n_iters))
for loss_name, loss_value in loss_records:
log=log+loss_name+':%.4f '%(loss_value)
if args.visual:
tb_writer.add_scalar(loss_name, loss_value, itr_global)
logger.info(log)
itr_start_time = time.time()
if itr % args.valid_every == 0:
valid_loader.epoch_init(config['batch_size'], config['diaglen'], 1, shuffle=False)
model.eval()
loss_records={}
while True:
batch = valid_loader.next_batch()
if batch is None: # end of epoch
break
context, context_lens, utt_lens, floors,_,_,_,response,res_lens,_ = batch
context, utt_lens = context[:,:,1:], utt_lens-1 # remove the sos token in the context and reduce the context length
context, context_lens, utt_lens, floors, response, res_lens\
= gVar(context), gVar(context_lens), gVar(utt_lens), gData(floors), gVar(response), gVar(res_lens)
valid_loss = model.valid(context, context_lens, utt_lens, floors, response, res_lens)
for loss_name, loss_value in valid_loss:
v=loss_records.get(loss_name, [])
v.append(loss_value)
loss_records[loss_name]=v
log = 'Validation '
for loss_name, loss_values in loss_records.items():
log = log + loss_name + ':%.4f '%(np.mean(loss_values))
if args.visual:
tb_writer.add_scalar(loss_name, np.mean(loss_values), itr_global)
logger.info(log)
itr += 1
itr_global+=1
if epoch % args.eval_every == 0: # evaluate the model in the validation set
model.eval()
valid_loader.epoch_init(1, config['diaglen'], 1, shuffle=False)
f_eval = open("./output/{}/{}/{}/tmp_results/epoch{}.txt".format(args.model, args.expname, args.dataset, epoch), "w")
repeat = 10
recall_bleu, prec_bleu, bow_extrema, bow_avg, bow_greedy, intra_dist1, intra_dist2, avg_len, inter_dist1, inter_dist2\
=evaluate(model, metrics, valid_loader, vocab, ivocab, f_eval, repeat)
if args.visual:
tb_writer.add_scalar('recall_bleu', recall_bleu, epoch)
tb_writer.add_scalar('prec_bleu', prec_bleu, epoch)
tb_writer.add_scalar('bow_extrema', bow_extrema, epoch)
tb_writer.add_scalar('bow_avg', bow_avg, epoch)
tb_writer.add_scalar('bow_greedy', bow_greedy, epoch)
tb_writer.add_scalar('intra_dist1', intra_dist1, epoch)
tb_writer.add_scalar('intra_dist2', intra_dist2, epoch)
tb_writer.add_scalar('inter_dist1', inter_dist1, epoch)
tb_writer.add_scalar('inter_dist2', inter_dist2, epoch)
# end of epoch ----------------------------
model.adjust_lr()
save_model(model, epoch) # save model after each epoch