-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
341 lines (309 loc) · 15.9 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import os
from time import sleep
from tqdm import tqdm
import numpy as np
import torch
import logging.config
import shutil
import pandas as pd
from bokeh.io import output_file, save, show
from bokeh.plotting import figure
from bokeh.layouts import column
import torchvision.models
import torch.nn as nn
from fairness_metrics import compute_fairness_metrics
from dataloaders import Fitzpatrick_17k_Augmentations, Fitzpatrick17k, Fitzpatrick17kV2, \
CelebA_Augmentations, CelebA, \
ISIC2019_Augmentations, ISIC2019, ISIC2019V2
def setup_logging(log_file='log.txt'):
"""Setup logging configuration
"""
logging.basicConfig(level=logging.DEBUG,
format="%(asctime)s - %(levelname)s - %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
filename=log_file,
filemode='w')
console = logging.StreamHandler()
console.setLevel(logging.INFO)
formatter = logging.Formatter('%(message)s')
console.setFormatter(formatter)
logging.getLogger('').addHandler(console)
class ResultsLog(object):
def __init__(self, path='results.csv', plot_path=None):
self.path = path
self.plot_path = plot_path or (self.path + '.html')
self.figures = []
self.results = None
def add(self, **kwargs):
df = pd.DataFrame([kwargs.values()], columns=kwargs.keys())
if self.results is None:
self.results = df
else:
self.results = self.results.append(df, ignore_index=True)
def save(self, title='Training Results'):
if len(self.figures) > 0:
if os.path.isfile(self.plot_path):
os.remove(self.plot_path)
output_file(self.plot_path, title=title)
plot = column(*self.figures)
save(plot)
self.figures = []
self.results.to_csv(self.path, index=False, index_label=False)
def load(self, path=None):
path = path or self.path
if os.path.isfile(path):
self.results.read_csv(path)
def show(self):
if len(self.figures) > 0:
plot = column(*self.figures)
show(plot)
#def plot(self, *kargs, **kwargs):
# line = Line(data=self.results, *kargs, **kwargs)
# self.figures.append(line)
def image(self, *kargs, **kwargs):
fig = figure()
fig.image(*kargs, **kwargs)
self.figures.append(fig)
def save_checkpoint(state, is_best, path='.', filename='checkpoint.pth.tar', save_all=False):
filename = os.path.join(path, filename)
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, os.path.join(path, 'model_best.pth.tar'))
if save_all:
shutil.copyfile(filename, os.path.join(
path, 'checkpoint_epoch_%s.pth.tar' % state['epoch']))
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
__optimizers = {
'SGD': torch.optim.SGD,
'ASGD': torch.optim.ASGD,
'Adam': torch.optim.Adam,
'Adamax': torch.optim.Adamax,
'Adagrad': torch.optim.Adagrad,
'Adadelta': torch.optim.Adadelta,
'Rprop': torch.optim.Rprop,
'RMSprop': torch.optim.RMSprop
}
def adjust_optimizer(optimizer, epoch, config):
"""Reconfigures the optimizer according to epoch and config dict"""
def modify_optimizer(optimizer, setting):
if 'optimizer' in setting:
optimizer = __optimizers[setting['optimizer']](
optimizer.param_groups)
logging.debug('OPTIMIZER - setting method = %s' %
setting['optimizer'])
for param_group in optimizer.param_groups:
for key in param_group.keys():
if key in setting:
logging.debug('OPTIMIZER - setting %s = %s' %
(key, setting[key]))
param_group[key] = setting[key]
return optimizer
if callable(config):
optimizer = modify_optimizer(optimizer, config(epoch))
else:
for e in range(epoch + 1): # run over all epochs - sticky setting
if e in config:
optimizer = modify_optimizer(optimizer, config[e])
return optimizer
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.float().topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].contiguous().view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
# kernel_img = model.features[0][0].kernel.data.clone()
# kernel_img.add_(-kernel_img.min())
# kernel_img.mul_(255 / kernel_img.max())
# save_image(kernel_img, 'kernel%s.jpg' % epoch)
def model_backbone_v2(num_classes, backbone):
if backbone == None:
return None
elif backbone == "mobilenet_v2":
model = torchvision.models.mobilenet_v2()
in_features = model.classifier[-1].in_features
model.classifier = nn.Linear(in_features, num_classes)
elif backbone == "mobilenet_v3_small":
model = torchvision.models.mobilenet_v3_small()
in_features = model.classifier[-1].in_features
model.classifier[-1] = nn.Linear(in_features, num_classes)
elif backbone == "mobilenet_v3_large":
model = torchvision.models.mobilenet_v3_large()
in_features = model.classifier[-1].in_features
model.classifier[-1] = nn.Linear(in_features, num_classes)
elif backbone == "shufflenet_v2_x0_5":
model = torchvision.models.shufflenet_v2_x0_5()
in_features = model.fc.in_features
model.fc = nn.Linear(in_features, num_classes)
elif backbone == "shufflenet_v2_x1_0":
model = torchvision.models.shufflenet_v2_x1_0()
in_features = model.fc.in_features
model.fc = nn.Linear(in_features, num_classes)
elif backbone == "shufflenet_v2_x1_5":
model = torchvision.models.shufflenet_v2_x1_5()
in_features = model.fc.in_features
model.fc = nn.Linear(in_features, num_classes)
elif backbone == "shufflenet_v2_x2_0":
model = torchvision.models.shufflenet_v2_x2_0()
in_features = model.fc.in_features
model.fc = nn.Linear(in_features, num_classes)
elif backbone == "resnet18":
model = torchvision.models.resnet18()
in_features = model.fc.in_features
model.fc = nn.Linear(in_features, num_classes)
elif backbone == "resnet34":
model = torchvision.models.resnet34()
in_features = model.fc.in_features
model.fc = nn.Linear(in_features, num_classes)
elif backbone == "resnet50":
model = torchvision.models.resnet50()
in_features = model.fc.in_features
model.fc = nn.Linear(in_features, num_classes)
elif backbone == "resnet101":
model = torchvision.models.resnet101()
in_features = model.fc.in_features
model.fc = nn.Linear(in_features, num_classes)
elif backbone == "resnet152":
model = torchvision.models.resnet152()
in_features = model.fc.in_features
model.fc = nn.Linear(in_features, num_classes)
elif backbone == "vgg11":
model = torchvision.models.vgg11()
model.avgpool = nn.AvgPool2d((1, 1))
model.classifier[0] = nn.Linear(512 * 3 * 3, 4096)
model.classifier[-1] = nn.Linear(4096, num_classes)
elif backbone == "efficientnet_b0":
model = torchvision.models.efficientnet_b0()
in_features = model.classifier[-1].in_features
model.classifier[-1] = nn.Linear(in_features, num_classes)
elif backbone == "vit_b_16":
model = torchvision.models.vit_b_16(num_classes=num_classes, image_size=(224 // 2)) # TODO: change image_size
else:
raise NotImplementedError
return model
def genScoreDataset(args, train_df, image_dir, device="cpu", enable_preload=True):
if args.dataset == "fitzpatrick17k":
light_score_df = train_df
dark_score_df = train_df
light_score_df = light_score_df.drop(light_score_df[(light_score_df["fitzpatrick"] < 1) | (light_score_df["fitzpatrick"] > 3)].index)
dark_score_df = dark_score_df.drop(dark_score_df[(dark_score_df["fitzpatrick"] < 4) | (dark_score_df["fitzpatrick"] > 6)].index)
score_size = min(light_score_df.shape[0], dark_score_df.shape[0])
light_score_df = light_score_df.sample(n=score_size)
dark_score_df = dark_score_df.sample(n=score_size)
image_size = 256 // 2
crop_size = 224 // 2
test_transform = Fitzpatrick_17k_Augmentations(is_training=False, image_size=image_size, input_size=crop_size).transforms
if args.pre_load == 1 and enable_preload:
light_score_dataset = Fitzpatrick17kV2(df=light_score_df, root_dir=image_dir, transform=test_transform)
dark_score_dataset = Fitzpatrick17kV2(df=dark_score_df, root_dir=image_dir, transform=test_transform)
light_score_dataset.to(device)
dark_score_dataset.to(device)
else:
light_score_dataset = Fitzpatrick17k(df=light_score_df, root_dir=image_dir, transform=test_transform)
dark_score_dataset = Fitzpatrick17k(df=dark_score_df, root_dir=image_dir, transform=test_transform)
elif args.dataset == "celeba":
light_score_df = train_df
dark_score_df = train_df
light_score_df = light_score_df.drop(light_score_df[light_score_df[args.fair_attr] != 0].index)
dark_score_df = dark_score_df.drop(dark_score_df[dark_score_df[args.fair_attr] != 1].index)
score_size = min(light_score_df.shape[0], dark_score_df.shape[0])
light_score_df = light_score_df.sample(n=score_size)
dark_score_df = dark_score_df.sample(n=score_size)
image_size = 256 // 2
crop_size = 224 // 2
test_transform = CelebA_Augmentations(is_training=False, image_size=image_size, input_size=crop_size).transforms
if args.pre_load == 1 and enable_preload:
raise NotImplementedError
else:
light_score_dataset = CelebA(df=light_score_df, fair_attr=args.fair_attr, y_attr=args.y_attr, root_dir=image_dir, transform=test_transform)
dark_score_dataset = CelebA(df=dark_score_df, fair_attr=args.fair_attr, y_attr=args.y_attr, root_dir=image_dir, transform=test_transform)
elif args.dataset == "isic2019":
light_score_df = train_df
dark_score_df = train_df
light_score_df = light_score_df.drop(light_score_df[light_score_df["sex_id"] != 0].index)
dark_score_df = dark_score_df.drop(dark_score_df[dark_score_df["sex_id"] != 1].index)
score_size = min(light_score_df.shape[0], dark_score_df.shape[0])
light_score_df = light_score_df.sample(n=score_size)
dark_score_df = dark_score_df.sample(n=score_size)
image_size = 256 // 2
crop_size = 224 // 2
test_transform = ISIC2019_Augmentations(is_training=False, image_size=image_size, input_size=crop_size).transforms
if args.pre_load == 1 and enable_preload:
light_score_dataset = ISIC2019V2(df=light_score_df, root_dir=image_dir, transform=test_transform)
dark_score_dataset = ISIC2019V2(df=dark_score_df, root_dir=image_dir, transform=test_transform)
light_score_dataset.to(device)
dark_score_dataset.to(device)
else:
light_score_dataset = ISIC2019(df=light_score_df, root_dir=image_dir, transform=test_transform)
dark_score_dataset = ISIC2019(df=dark_score_df, root_dir=image_dir, transform=test_transform)
return light_score_dataset, dark_score_dataset
def validate(net, valloader, criterion, device, ctype, f_attr):
net.eval()
with torch.no_grad():
correct = 0
total = 0
val_loss = 0.0
label_list = []
y_pred_list = []
skin_color_list = []
for _, data in enumerate(tqdm(valloader)):
inputs, labels = data["image"].float().to(device), torch.from_numpy(np.asarray(data[ctype])).long().to(device)
outputs = net(inputs)
_, predicted = torch.max(outputs.data, 1)
loss = criterion(outputs, labels)
val_loss += loss.item() * labels.size(0)
label_list.append(labels.detach().cpu().numpy())
y_pred_list.append(predicted.detach().cpu().numpy())
skin_color_list.append(data[f_attr].numpy())
total += labels.size(0)
correct += (predicted == labels).sum()
label_list = np.concatenate(label_list)
y_pred_list = np.concatenate(y_pred_list)
skin_color_list = np.concatenate(skin_color_list)
# return_results = {
# 'skin_color/overall_acc': metrics.accuracy_score(label_list[skin_color_list!=-1], y_pred_list[skin_color_list!=-1]),
# 'skin_color/light_acc': metrics.accuracy_score(label_list[skin_color_list==0], y_pred_list[skin_color_list==0]),
# 'skin_color/dark_acc': metrics.accuracy_score(label_list[skin_color_list==1], y_pred_list[skin_color_list==1]),
# 'skin_color/overall_precision': metrics.precision_score(label_list[skin_color_list!=-1], y_pred_list[skin_color_list!=-1], average='macro', zero_division=0),
# 'skin_color/light_precision': metrics.precision_score(label_list[skin_color_list==0], y_pred_list[skin_color_list==0], average='macro', zero_division=0),
# 'skin_color/dark_precision': metrics.precision_score(label_list[skin_color_list==1], y_pred_list[skin_color_list==1], average='macro', zero_division=0),
# 'skin_color/overall_recall': metrics.recall_score(label_list[skin_color_list!=-1], y_pred_list[skin_color_list!=-1], average='macro', zero_division=0),
# 'skin_color/light_recall': metrics.recall_score(label_list[skin_color_list==0], y_pred_list[skin_color_list==0], average='macro', zero_division=0),
# 'skin_color/dark_recall': metrics.recall_score(label_list[skin_color_list==1], y_pred_list[skin_color_list==1], average='macro', zero_division=0),
# 'skin_color/overall_f1_score': metrics.f1_score(label_list[skin_color_list!=-1], y_pred_list[skin_color_list!=-1], average='macro', zero_division=0),
# 'skin_color/light_f1_score': metrics.f1_score(label_list[skin_color_list==0], y_pred_list[skin_color_list==0], average='macro', zero_division=0),
# 'skin_color/dark_f1_score': metrics.f1_score(label_list[skin_color_list==1], y_pred_list[skin_color_list==1], average='macro', zero_division=0),
# }
# get fairness metric
# fairness_metrics = compute_fairness_metrics(label_list[skin_color_list!=-1], y_pred_list[skin_color_list!=-1], skin_color_list[skin_color_list!=-1])
# for k, v in return_results.items():
# print(f'{k}:{v:.4f}')
# for k, v in fairness_metrics.items():
# print(f'{k}:{v:.4f}')
val_loss /= total
val_acc = 100. * correct / total
fairness_metrics = compute_fairness_metrics(label_list[skin_color_list!=-1], y_pred_list[skin_color_list!=-1], skin_color_list[skin_color_list!=-1])
val_eopp0 = abs(fairness_metrics['fairness/EOpp0'])
val_eopp0_abs = fairness_metrics['fairness/EOpp0_abs']
val_eopp1_abs = fairness_metrics['fairness/EOpp1_abs']
val_eodds_abs = fairness_metrics['fairness/EOdds_abs']
print('Val\'s ac is: %.02f%%, loss is: %.04f, eopp0 is: %.04f, eopp0_abs is: %.04f, eopp1_abs is: %.04f, eodds_abs is: %.04f' % (val_acc, val_loss, val_eopp0, val_eopp0_abs, val_eopp1_abs, val_eodds_abs))
return val_acc, val_loss, val_eopp0, val_eopp0_abs, val_eopp1_abs, val_eodds_abs