Unofficial re-implementation for MemSeg: A semi-supervised method for image surface defect detection using differences and commonalities
- Docker image: nvcr.io/nvidia/pytorch:20.12-py3
einops==0.5.0
timm==0.5.4
wandb==0.12.17
omegaconf
imgaug==0.4.0
Example
python main.py configs=configs.yaml DATASET.target=bottle
voila "[demo] model inference.ipynb" --port ${port} --Voila.ip ${ip}
- Backbone: ResNet18
target | AUROC-image | AUROC-pixel | AUPRO-pixel |
---|---|---|---|
leather | 100 | 98.31 | 99.05 |
pill | 96.21 | 88 | 90.23 |
carpet | 98.72 | 94.1 | 95.31 |
hazelnut | 97.89 | 89.28 | 94.86 |
tile | 100 | 98.97 | 98.84 |
cable | 83.71 | 74.69 | 73.21 |
toothbrush | 100 | 98.67 | 97.13 |
transistor | 92.42 | 75 | 79.41 |
zipper | 99.63 | 93.94 | 93 |
metal_nut | 90.42 | 80.99 | 90.62 |
grid | 99.92 | 96.48 | 95.87 |
bottle | 100 | 94.67 | 92.61 |
capsule | 92.34 | 83.45 | 84.34 |
screw | 81.64 | 83.04 | 82.93 |
wood | 99.74 | 94.9 | 94.45 |
Average | 95.51 | 89.63 | 90.79 |
@article{DBLP:journals/corr/abs-2205-00908,
author = {Minghui Yang and
Peng Wu and
Jing Liu and
Hui Feng},
title = {MemSeg: {A} semi-supervised method for image surface defect detection
using differences and commonalities},
journal = {CoRR},
volume = {abs/2205.00908},
year = {2022},
url = {https://doi.org/10.48550/arXiv.2205.00908},
doi = {10.48550/arXiv.2205.00908},
eprinttype = {arXiv},
eprint = {2205.00908},
timestamp = {Tue, 03 May 2022 15:52:06 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-2205-00908.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}