Skip to content

Latest commit

 

History

History
107 lines (79 loc) · 2.76 KB

ml-clustering.md

File metadata and controls

107 lines (79 loc) · 2.76 KB
layout title displayTitle
global
Clustering - spark.ml
Clustering - spark.ml

In this section, we introduce the pipeline API for clustering in mllib.

Table of Contents

  • This will become a table of contents (this text will be scraped). {:toc}

K-means

k-means is one of the most commonly used clustering algorithms that clusters the data points into a predefined number of clusters. The MLlib implementation includes a parallelized variant of the k-means++ method called kmeans||.

KMeans is implemented as an Estimator and generates a KMeansModel as the base model.

Input Columns

Param name Type(s) Default Description
featuresCol Vector "features" Feature vector

Output Columns

Param name Type(s) Default Description
predictionCol Int "prediction" Predicted cluster center

Example

Refer to the [Scala API docs](api/scala/index.html#org.apache.spark.ml.clustering.KMeans) for more details.

{% include_example scala/org/apache/spark/examples/ml/KMeansExample.scala %}

Refer to the [Java API docs](api/java/org/apache/spark/ml/clustering/KMeans.html) for more details.

{% include_example java/org/apache/spark/examples/ml/JavaKMeansExample.java %}

Latent Dirichlet allocation (LDA)

LDA is implemented as an Estimator that supports both EMLDAOptimizer and OnlineLDAOptimizer, and generates a LDAModel as the base models. Expert users may cast a LDAModel generated by EMLDAOptimizer to a DistributedLDAModel if needed.

Refer to the Scala API docs for more details.

{% include_example scala/org/apache/spark/examples/ml/LDAExample.scala %}

Refer to the Java API docs for more details.

{% include_example java/org/apache/spark/examples/ml/JavaLDAExample.java %}