forked from mit-han-lab/bevfusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
lidar-centerpoint-bev128.yaml
64 lines (63 loc) · 1.33 KB
/
lidar-centerpoint-bev128.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
model:
encoders:
camera: null
lidar:
voxelize:
max_num_points: 10
point_cloud_range: ${point_cloud_range}
voxel_size: ${voxel_size}
max_voxels: [90000, 120000]
backbone:
type: SparseEncoder
in_channels: 5
sparse_shape: [1024, 1024, 41]
output_channels: 128
order:
- conv
- norm
- act
encoder_channels:
- [16, 16, 32]
- [32, 32, 64]
- [64, 64, 128]
- [128, 128]
encoder_paddings:
- [0, 0, 1]
- [0, 0, 1]
- [0, 0, [1, 1, 0]]
- [0, 0]
block_type: basicblock
fuser: null
decoder:
backbone:
type: SECOND
in_channels: 256
out_channels: [128, 256]
layer_nums: [5, 5]
layer_strides: [1, 2]
norm_cfg:
type: BN
eps: 1.0e-3
momentum: 0.01
conv_cfg:
type: Conv2d
bias: false
neck:
type: SECONDFPN
in_channels: [128, 256]
out_channels: [256, 256]
upsample_strides: [1, 2]
norm_cfg:
type: BN
eps: 1.0e-3
momentum: 0.01
upsample_cfg:
type: deconv
bias: false
use_conv_for_no_stride: true
heads:
map:
in_channels: 512
optimizer:
type: AdamW
lr: 1.0e-4