-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcalibration_routine_T.m
98 lines (65 loc) · 3.48 KB
/
calibration_routine_T.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
function x = calibration_routine()
tic
format shortEng
format compact
% parpool
% gaoptions = optimoptions('ga','UseParallel',true);
% x = [0.032; 0.3627];
% lb = x0*0.1;
% ub = x0*10;
x(1) = 44.2401e-003;; %, 'Kz_K1', % 2 open water diffusion parameter (-)
x(2) = 0.000898; %, 'Kz_K1_ice', % 3 under ice diffusion parameter (-)
x(3) = 7E-05; %, 'Kz_N0', % 4 min. stability frequency (s-2)
x(4) = 0.5; %, 'C_shelter', % 5 wind shelter parameter (-)
x(5) = 0.3; %, 'alb_melt_ice', % 8 albedo of melting ice (-)
x(6) = 0.77; %, 'alb_melt_snow', % 9 albedo of melting snow (-)
lb = zeros(size(x));
ub = ones(size(x));
% lb = [0.01; 0.1];
% ub = [0.1; 0.5];
fcns = {@gaplotscorediversity, @gaplotstopping, @gaplotgenealogy, @gaplotscores, @gaplotdistance, @gaplotselection, @gaplotmaxconstr, @gaplotbestf, @gaplotbestindiv, @gaplotexpectation, @gaplotrange, @gaplotpareto, @gaplotparetodistance, @gaplotrankhist, @gaplotspread};
population_size = 72; % Populations size for each generation of the genetic algorithm
max_generations = 7; % How many generations to run the genetic algorithm for
parallelize = true; % 15 generation takes 12 hours on 24 cores
% options = gaoptimset('Display','iter','UseParallel', true, 'TolFun', 1e-2, 'PlotFcns', fcns);
options = optimoptions('ga', 'MaxGenerations', max_generations, 'PopulationSize', population_size, 'UseParallel', parallelize);
x = ga(@opt_fun, length(x) ,[],[],[],[],lb,ub, @nonlcon, options)
%% opt_fun: function which we are going to minimize
function [res] = opt_fun(x)
[lake_params, sediment_params] = load_params();
run_INCA = 0; % 1- MyLake will run INCA, 0- No run
use_INCA = 0; % 1- MyLake will take written INCA input, either written just now or saved before, and prepare inputs from them. 0- MyLake uses hand-made input files
is_save_results = false; % Do not save profiles and initial concentrations
lake_params{2} = x(1); % 2 open water diffusion parameter (-)
lake_params{3} = x(2); % 3 under ice diffusion parameter (-)
lake_params{4} = x(3); % 4 min. stability frequency (s-2)
lake_params{5} = x(4); % 5 wind shelter parameter (-)
lake_params{8} = x(5); % 8 albedo of melting ice (-)
lake_params{9} = x(6); % 9 albedo of melting snow (-)
run_ID = 'Vansjo_Hist_M0' ; % CALIBRATION RUN
clim_ID = run_ID
m_start=[2004, 1, 1]; %
m_stop=[2013, 12, 31]; %
disp(datetime('now'));
[MyLake_results, Sediment_results] = fn_MyL_application(m_start, m_stop, sediment_params, lake_params, use_INCA, run_INCA, run_ID, clim_ID, is_save_results); % runs the model and outputs obs and sim
load('Postproc_code/Vansjo/VAN1_data_2017_02_28_10_55.mat')
depths = [5;10;15;20;25;30;35;40];
r_Temp = 0;
for i=1:size(depths,1)
d = depths(i);
zinx=find(MyLake_results.basin1.z == d);
T_measured = res.T(res.depth1 == d);
day_measured = res.date(res.depth1 == d);
day_measured = day_measured(~isnan(T_measured));
T_measured = T_measured(~isnan(T_measured));
Temp_mod = MyLake_results.basin1.T(zinx,:)';
[T_date,loc_sim, loc_obs] = intersect(MyLake_results.basin1.days, day_measured);
r_Temp = r_Temp + RMSE(Temp_mod(loc_sim, 1), T_measured(loc_obs, 1));
end
x'
res = r_Temp
function r = RMSE(y, yhat)
r = sqrt(mean((y-yhat).^2));
function [c,ceq] = nonlcon(x)
c = [-x(1); -x(2)]; % -x(3); -x(4); -x(5); -x(6); -x(7); -x(8); -x(9); -x(10); -x(11)];
ceq = [];