-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
160 lines (134 loc) · 6.28 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import argparse
import torch
import logging
from torch.utils.data import DataLoader
from dataset import DrugReviewDataset, create_data_loader
from model import SentimentModel, ModelConfig
from tqdm import tqdm
import os
from torch.utils.tensorboard import SummaryWriter
def parse_args():
parser = argparse.ArgumentParser(description='Train the drug review sentiment model')
parser.add_argument('--train_file', type=str, required=True, help='Path to training data file')
parser.add_argument('--val_file', type=str, help='Path to validation data file')
parser.add_argument('--model_dir', type=str, default='checkpoints', help='Directory to save model checkpoints')
parser.add_argument('--batch_size', type=int, default=32, help='Batch size for training')
parser.add_argument('--epochs', type=int, default=10, help='Number of epochs to train')
parser.add_argument('--learning_rate', type=float, default=1e-3, help='Learning rate')
parser.add_argument('--max_length', type=int, default=128, help='Maximum sequence length')
parser.add_argument('--embedding_dim', type=int, default=100, help='Dimension of word embeddings')
parser.add_argument('--lstm_units', type=int, default=64, help='Number of LSTM units')
parser.add_argument('--dropout_rate', type=float, default=0.2, help='Dropout rate')
parser.add_argument('--device', type=str, default='cpu' if torch.cuda.is_available() else 'cpu',help='Device to use for training (cuda/cpu)')
return parser.parse_args()
def setup_logging():
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.StreamHandler(),
logging.FileHandler('training.log')
]
)
def train(args):
# 设置设备
device = torch.device(args.device)
logging.info(f'Using device: {device}')
# 加载数据
train_dataset = DrugReviewDataset(args.train_file, max_length=args.max_length)
train_loader = create_data_loader(train_dataset, args.batch_size)
if args.val_file:
val_dataset = DrugReviewDataset(args.val_file, max_length=args.max_length)
val_loader = create_data_loader(val_dataset, args.batch_size, shuffle=False)
# 创建配置
config = ModelConfig()
config.vocab_size = len(train_dataset.tokenizer)
config.embedding_dim = args.embedding_dim
config.lstm_units = args.lstm_units
config.dropout_rate = args.dropout_rate
config.learning_rate = args.learning_rate
# 创建模型
model = SentimentModel(config).to(device)
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=args.learning_rate)
# 创建模型保存目录
os.makedirs(args.model_dir, exist_ok=True)
# 创建 TensorBoard writer
writer = SummaryWriter(os.path.join(args.model_dir, 'tensorboard_logs'))
# 训练循环
best_val_acc = 0.0
for epoch in range(args.epochs):
model.train()
total_loss = 0
correct = 0
total = 0
# 训练阶段
progress_bar = tqdm(train_loader, desc=f'Epoch {epoch+1}/{args.epochs}')
for batch_idx, batch in enumerate(progress_bar):
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
labels = batch['label'].to(device)
optimizer.zero_grad()
outputs = model(input_ids, attention_mask)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
total_loss += loss.item()
_, predicted = torch.max(outputs, 1)
correct += (predicted == labels).sum().item()
total += labels.size(0)
# 记录每个 batch 的训练数据
global_step = epoch * len(train_loader) + batch_idx
writer.add_scalar('Training/BatchLoss', loss.item(), global_step)
writer.add_scalar('Training/BatchAccuracy', 100.*correct/total, global_step)
progress_bar.set_postfix({'loss': total_loss/len(train_loader),'acc': 100.*correct/total})
# 记录每个 epoch 的训练数据
epoch_loss = total_loss / len(train_loader)
epoch_acc = 100. * correct / total
writer.add_scalar('Training/EpochLoss', epoch_loss, epoch)
writer.add_scalar('Training/EpochAccuracy', epoch_acc, epoch)
# 验证阶段
if args.val_file:
model.eval()
val_correct = 0
val_total = 0
val_loss = 0
with torch.no_grad():
for batch in val_loader:
input_ids = batch['input_ids'].to(device)
attention_mask = batch['attention_mask'].to(device)
labels = batch['label'].to(device)
outputs = model(input_ids, attention_mask)
# 计算验证损失
loss = criterion(outputs, labels)
val_loss += loss.item()
_, predicted = torch.max(outputs, 1)
val_correct += (predicted == labels).sum().item()
val_total += labels.size(0)
val_acc = 100. * val_correct / val_total
val_loss = val_loss / len(val_loader)
# 记录验证数据
writer.add_scalar('Validation/Loss', val_loss, epoch)
writer.add_scalar('Validation/Accuracy', val_acc, epoch)
logging.info(f'Validation Accuracy: {val_acc:.2f}%')
# 保存最佳模型
if val_acc > best_val_acc:
best_val_acc = val_acc
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'val_acc': val_acc,
}, os.path.join(args.model_dir, 'best_model.pth'))
# 关闭 TensorBoard writer
writer.close()
# 保存最终模型
torch.save({
'epoch': args.epochs,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
}, os.path.join(args.model_dir, 'final_model.pth'))
if __name__ == '__main__':
args = parse_args()
setup_logging()
train(args)