Skip to content

Commit 840e8ea

Browse files
Mike KleinSkia Commit-Bot
authored andcommitted
power up skvx::map
Rewrite map() to allow any number of arguments, now also used for 2-argument (pow) and 3-argument (fma) operations. I left a note about fma()... I can't understand why, but calling as map(fmaf, x,y,z) ends up with scalar calls to fmaf(), but with the lambda indirection we see perfect vector codegen. I had to break map() back into two parts. I don't see any way to pass both a variadic number of arguments and play our trick with the default std::index_sequence parameter. The lane lambda similarly exists only to split up the expansion of the Rest... type pack from the I... index pack; you can't use two pack expansions in the same expression. Change-Id: Ia156a7fd846237f687d6018a7f95550c9fd4a56d Reviewed-on: https://skia-review.googlesource.com/c/skia/+/325736 Commit-Queue: Mike Klein <mtklein@google.com> Reviewed-by: Herb Derby <herb@google.com>
1 parent 21f8b51 commit 840e8ea

File tree

2 files changed

+37
-60
lines changed

2 files changed

+37
-60
lines changed

include/private/SkVx.h

Lines changed: 34 additions & 57 deletions
Original file line numberDiff line numberDiff line change
@@ -314,8 +314,7 @@ SINT Vec<2*N,T> join(const Vec<N,T>& lo, const Vec<N,T>& hi) {
314314
}
315315
#endif
316316

317-
// Some operations we want are not expressible with Clang/GCC vector
318-
// extensions, so we implement them using the recursive approach.
317+
// Some operations we want are not expressible with Clang/GCC vector extensions.
319318

320319
// N == 1 scalar implementations.
321320
SIT Vec<1,T> if_then_else(const Vec<1,M<T>>& cond, const Vec<1,T>& t, const Vec<1,T>& e) {
@@ -324,8 +323,6 @@ SIT Vec<1,T> if_then_else(const Vec<1,M<T>>& cond, const Vec<1,T>& t, const Vec<
324323
(~cond & bit_pun<Vec<1, M<T>>>(e)) );
325324
}
326325

327-
SIT Vec<1,T> pow(const Vec<1,T>& x, const Vec<1,T>& y) { return std::pow(x.val, y.val); }
328-
329326
// All default N != 1 implementations just recurse on lo and hi halves.
330327

331328
// Clang can reason about naive_if_then_else() and optimize through it better
@@ -403,9 +400,6 @@ SINT bool all(const Vec<N,T>& x) {
403400
&& all(x.hi);
404401
}
405402

406-
SINT Vec<N,T> pow(const Vec<N,T>& x, const Vec<N,T>& y) {
407-
return join(pow(x.lo, y.lo), pow(x.hi, y.hi));
408-
}
409403

410404
// Scalar/vector operations just splat the scalar to a vector...
411405
SINTU Vec<N,T> operator+ (U x, const Vec<N,T>& y) { return Vec<N,T>(x) + y; }
@@ -421,8 +415,6 @@ SINTU Vec<N,M<T>> operator<=(U x, const Vec<N,T>& y) { return Vec<N,T>(x) <= y;
421415
SINTU Vec<N,M<T>> operator>=(U x, const Vec<N,T>& y) { return Vec<N,T>(x) >= y; }
422416
SINTU Vec<N,M<T>> operator< (U x, const Vec<N,T>& y) { return Vec<N,T>(x) < y; }
423417
SINTU Vec<N,M<T>> operator> (U x, const Vec<N,T>& y) { return Vec<N,T>(x) > y; }
424-
SINTU Vec<N,T> pow(U x, const Vec<N,T>& y) { return pow(Vec<N,T>(x), y); }
425-
426418
// ... and same deal for vector/scalar operations.
427419
SINTU Vec<N,T> operator+ (const Vec<N,T>& x, U y) { return x + Vec<N,T>(y); }
428420
SINTU Vec<N,T> operator- (const Vec<N,T>& x, U y) { return x - Vec<N,T>(y); }
@@ -437,7 +429,7 @@ SINTU Vec<N,M<T>> operator<=(const Vec<N,T>& x, U y) { return x <= Vec<N,T>(y);
437429
SINTU Vec<N,M<T>> operator>=(const Vec<N,T>& x, U y) { return x >= Vec<N,T>(y); }
438430
SINTU Vec<N,M<T>> operator< (const Vec<N,T>& x, U y) { return x < Vec<N,T>(y); }
439431
SINTU Vec<N,M<T>> operator> (const Vec<N,T>& x, U y) { return x > Vec<N,T>(y); }
440-
SINTU Vec<N,T> pow(const Vec<N,T>& x, U y) { return pow(x, Vec<N,T>(y)); }
432+
441433

442434
// The various op= operators, for vectors...
443435
SINT Vec<N,T>& operator+=(Vec<N,T>& x, const Vec<N,T>& y) { return (x = x + y); }
@@ -505,16 +497,10 @@ SI Vec<sizeof...(Ix),T> shuffle(const Vec<N,T>& x) {
505497
#endif
506498
}
507499

508-
// fma() delivers a fused mul-add, even if that's really expensive.
509-
SI Vec<1,float> fma(const Vec<1,float>& x, const Vec<1,float>& y, const Vec<1,float>& z) {
510-
return std::fma(x.val, y.val, z.val);
511-
}
512-
SIN Vec<N,float> fma(const Vec<N,float>& x, const Vec<N,float>& y, const Vec<N,float>& z) {
513-
return join(fma(x.lo, y.lo, z.lo),
514-
fma(x.hi, y.hi, z.hi));
515-
}
500+
// Call map(fn, x) for a vector with fn() applied to each lane of x, { fn(x[0]), fn(x[1]), ... },
501+
// or map(fn, x,y) for a vector of fn(x[i], y[i]), etc.
516502

517-
template <int N, typename T, typename Fn, std::size_t... I>
503+
template <typename Fn, typename... Args, size_t... I>
518504
#if defined(__clang__)
519505
// CFI, specifically -fsanitize=cfi-icall, seems to give a false positive here,
520506
// with errors like "control flow integrity check for type 'float (float)
@@ -523,25 +509,37 @@ template <int N, typename T, typename Fn, std::size_t... I>
523509
// So, stifle CFI in this function.
524510
__attribute__((no_sanitize("cfi")))
525511
#endif
526-
SI auto map(const skvx::Vec<N,T>& x, Fn&& fn,
527-
std::index_sequence<I...> ix = {}) -> skvx::Vec<N, decltype(fn(x[0]))> {
528-
if /*constexpr*/ (sizeof...(I) == 0) {
529-
// When called as map(x, fn), bootstrap the index_sequence we want: 0,1,...,N-1.
530-
return map(x, fn, std::make_index_sequence<N>{});
531-
}
532-
return { fn(x[I])... };
512+
SI auto map(std::index_sequence<I...>,
513+
Fn&& fn, const Args&... args) -> skvx::Vec<sizeof...(I), decltype(fn(args[0]...))> {
514+
auto lane = [&](size_t i) { return fn(args[i]...); };
515+
return { lane(I)... };
516+
}
517+
518+
template <typename Fn, int N, typename T, typename... Rest>
519+
auto map(Fn&& fn, const Vec<N,T>& first, const Rest&... rest) {
520+
// Derive an {0...N-1} index_sequence from the size of the first arg: N lanes in, N lanes out.
521+
return map(std::make_index_sequence<N>{}, fn, first,rest...);
533522
}
534523

535-
SIN Vec<N,float> atan(const Vec<N,float>& x) { return map(x, atanf); }
536-
SIN Vec<N,float> ceil(const Vec<N,float>& x) { return map(x, ceilf); }
537-
SIN Vec<N,float> floor(const Vec<N,float>& x) { return map(x, floorf); }
538-
SIN Vec<N,float> trunc(const Vec<N,float>& x) { return map(x, truncf); }
539-
SIN Vec<N,float> round(const Vec<N,float>& x) { return map(x, roundf); }
540-
SIN Vec<N,float> sqrt(const Vec<N,float>& x) { return map(x, sqrtf); }
541-
SIN Vec<N,float> abs(const Vec<N,float>& x) { return map(x, fabsf); }
542-
SIN Vec<N,float> sin(const Vec<N,float>& x) { return map(x, sinf); }
543-
SIN Vec<N,float> cos(const Vec<N,float>& x) { return map(x, cosf); }
544-
SIN Vec<N,float> tan(const Vec<N,float>& x) { return map(x, tanf); }
524+
SIN Vec<N,float> atan(const Vec<N,float>& x) { return map( atanf, x); }
525+
SIN Vec<N,float> ceil(const Vec<N,float>& x) { return map( ceilf, x); }
526+
SIN Vec<N,float> floor(const Vec<N,float>& x) { return map(floorf, x); }
527+
SIN Vec<N,float> trunc(const Vec<N,float>& x) { return map(truncf, x); }
528+
SIN Vec<N,float> round(const Vec<N,float>& x) { return map(roundf, x); }
529+
SIN Vec<N,float> sqrt(const Vec<N,float>& x) { return map( sqrtf, x); }
530+
SIN Vec<N,float> abs(const Vec<N,float>& x) { return map( fabsf, x); }
531+
SIN Vec<N,float> sin(const Vec<N,float>& x) { return map( sinf, x); }
532+
SIN Vec<N,float> cos(const Vec<N,float>& x) { return map( cosf, x); }
533+
SIN Vec<N,float> tan(const Vec<N,float>& x) { return map( tanf, x); }
534+
SIN Vec<N,float> pow(const Vec<N,float>& x,
535+
const Vec<N,float>& y) { return map(powf, x,y); }
536+
SIN Vec<N,float> fma(const Vec<N,float>& x,
537+
const Vec<N,float>& y,
538+
const Vec<N,float>& z) {
539+
// I don't understand why Clang's codegen is terrible if we write map(fmaf, x,y,z) directly.
540+
auto fn = [](float x, float y, float z) { return fmaf(x,y,z); };
541+
return map(fn, x,y,z);
542+
}
545543

546544
SI Vec<1,int> lrint(const Vec<1,float>& x) {
547545
return (int)lrintf(x.val);
@@ -704,27 +702,6 @@ SIN Vec<N,uint8_t> approx_scale(const Vec<N,uint8_t>& x, const Vec<N,uint8_t>& y
704702
}
705703
#endif
706704

707-
#if defined(__AVX2__)
708-
SI Vec<4,float> fma(const Vec<4,float>& x, const Vec<4,float>& y, const Vec<4,float>& z) {
709-
return bit_pun<Vec<4,float>>(_mm_fmadd_ps(bit_pun<__m128>(x),
710-
bit_pun<__m128>(y),
711-
bit_pun<__m128>(z)));
712-
}
713-
714-
SI Vec<8,float> fma(const Vec<8,float>& x, const Vec<8,float>& y, const Vec<8,float>& z) {
715-
return bit_pun<Vec<8,float>>(_mm256_fmadd_ps(bit_pun<__m256>(x),
716-
bit_pun<__m256>(y),
717-
bit_pun<__m256>(z)));
718-
}
719-
#elif defined(__aarch64__)
720-
SI Vec<4,float> fma(const Vec<4,float>& x, const Vec<4,float>& y, const Vec<4,float>& z) {
721-
// These instructions tend to work like z += xy, so the order here is z,x,y.
722-
return bit_pun<Vec<4,float>>(vfmaq_f32(bit_pun<float32x4_t>(z),
723-
bit_pun<float32x4_t>(x),
724-
bit_pun<float32x4_t>(y)));
725-
}
726-
#endif
727-
728705
#endif // !defined(SKNX_NO_SIMD)
729706

730707
} // namespace skvx

src/opts/SkVM_opts.h

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -50,7 +50,7 @@ static inline skvx::Vec<N,int> gather32(const int* ptr, const skvx::Vec<N,int>&
5050
return join(gather32(ptr, ix.lo),
5151
gather32(ptr, ix.hi));
5252
}
53-
return map(ix, [&](int i) { return ptr[i]; });
53+
return map([&](int i) { return ptr[i]; }, ix);
5454
}
5555

5656
namespace SK_OPTS_NS {
@@ -182,12 +182,12 @@ namespace SK_OPTS_NS {
182182
STRIDE_K(Op::gather8): {
183183
const uint8_t* ptr;
184184
memcpy(&ptr, (const uint8_t*)args[immy] + immz, sizeof(ptr));
185-
r[d].i32 = map(r[x].i32, [&](int ix) { return (int)ptr[ix]; });
185+
r[d].i32 = map([&](int ix) { return (int)ptr[ix]; }, r[x].i32);
186186
} break;
187187
STRIDE_K(Op::gather16): {
188188
const uint16_t* ptr;
189189
memcpy(&ptr, (const uint8_t*)args[immy] + immz, sizeof(ptr));
190-
r[d].i32 = map(r[x].i32, [&](int ix) { return (int)ptr[ix]; });
190+
r[d].i32 = map([&](int ix) { return (int)ptr[ix]; }, r[x].i32);
191191
} break;
192192
STRIDE_K(Op::gather32): {
193193
const int* ptr;

0 commit comments

Comments
 (0)