Skip to content

Latest commit

 

History

History
142 lines (100 loc) · 4.8 KB

README.md

File metadata and controls

142 lines (100 loc) · 4.8 KB

GridDB connector for Apache Spark

Overview

GridDB connector for Apache Spark is a module supporting connection between GridDB and Apache Spark. This uses GridDB server, GridDB Java client, and GridDB connector for Apache Hadoop MapReduce. We can create DataFrame from an existing GridDB container and operate with it.

Operating environment

Library building and program execution are checked in the environment below.

OS:             CentOS6.7(x64)
Java:           JDK 1.8.0_101
Apache Hadoop:  Version 2.6.5
Apache Spark:   Version 2.1.0
Scala:          Version 2.11.8

GridDB server and Java client:                3.0 CE
GridDB connector for Apache Hadoop MapReduce: 1.0

QuickStart

Preparations

  1. Install Hadoop and Spark

     $ cd [INSTALL_FOLDER]
     $ wget http://archive.apache.org/dist/hadoop/core/hadoop-2.6.5/hadoop-2.6.5.tar.gz
     $ tar xvfz hadoop-2.6.5.tar.gz
     $ wget http://archive.apache.org/dist/spark/spark-2.1.0/spark-2.1.0-bin-hadoop2.6.tgz
     $ tar xvfz spark-2.1.0-bin-hadoop2.6.tgz
    

    Note: [INSTALL_FOLDER] means the folder installed for Spark, Hadoop and GridDB connector for Spark.

  2. Please add the following environment variables to .bashrc

     $ vi ~/.bashrc
     export JAVA_HOME=/usr/lib/jvm/[JDK folder]
     export HADOOP_HOME=[INSTALL_FOLDER]/hadoop-2.6.5
     export SPARK_HOME=[INSTALL_FOLDER]/spark-2.1.0-bin-hadoop2.6
     export GRIDDB_SPARK=[INSTALL_FOLDER]/griddb_spark
     export GRIDDB_SPARK_PROPERTIES=$GRIDDB_SPARK/gd-config.xml
     
     export PATH=$HADOOP_HOME/sbin:$HADOOP_HOME/bin:$SPARK_HOME/bin:$PATH
     
     export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
     export HADOOP_OPTS="$HADOOP_OPTS -Djava.library.path=$HADOOP_HOME/lib/native"
    
     $ source ~/.bashrc
    
  3. Please modify file "gd-config.xml"

     $ cd [INSTALL_FOLDER]/griddb_spark
     $ vi gd-config.xml
     
     <!-- GridDB properties -->
     <property>
     	<name>gs.user</name>
     	<value>[GridDB user]</value>
     </property>
     <property>
     	<name>gs.password</name>
     	<value>[GridDB password]</value>
     </property>
     <property>
     	<name>gs.cluster.name</name>
     	<value>[GridDB cluster name]</value>
     </property>
     <!-- Define address and port for multicast method, leave it blank if using other method -->
     <property>
     	<name>gs.notification.address</name>
     	<value>[GridDB notification address(default is 239.0.0.1)]</value>
     </property>
     <property>
     	<name>gs.notification.port</name>
     	<value>[GridDB notification port(default is 31999)]</value>
     </property>
    

Please refer to Configuration for GridDB properties.

  1. Build a GridDB Java client and a GridDB connector for Hadoop MapReduce,
    place the following files under the griddb_spark/gs-spark-datasource/lib directory.

    gridstore.jar
    gs-hadoop-mapreduce-client-1.0.0.jar

  2. Add SPARK_CLASSPATH to "spark-env.sh"

     $ cd [INSTALL_FOLDER]/spark-2.1.0-bin-hadoop2.6
     $ vi conf/spark-env.sh
     SPARK_CLASSPATH=.:$GRIDDB_SAPRK/gs-spark-datasource/target/gs-spark-datasource.jar:
     	$GRIDDB_SAPRK/gs-spark-datasource/lib/gridstore.jar:
     	$GRIDDB_SAPRK/gs-spark-datasource/lib/gs-hadoop-mapreduce-client-1.0.0.jar
    

Build the connector and an example

Run the mvn command like the following:

$ cd [INSTALL_FOLDER]/griddb_spark
$ mvn package

and create the following jar files.

gs-spark-datasource/target/gs-spark-datasource.jar
gs-spark-datasource-example/target/example.jar

Run the example program

GridDB cluster needs to be started in advance.

  1. Put data to server with GridDB Java client

     $ cd [INSTALL_FOLDER]/griddb_spark
     $ java -cp ./gs-spark-datasource-example/target/example.jar:gs-spark-datasource/lib/gridstore.jar 
     	Init <GridDB notification address> <GridDB notification port>
     				<GridDB cluster name> <GridDB user> <GridDB password>
    
  2. Run some queries with GridDB connector for Spark

     $ spark-submit --class Query ./gs-spark-datasource-example/target/example.jar
    

API

With a SparkSession, applications can create DataFrames from an existing GridDB container in the form as bellow.

var df = session.read.format("com.toshiba.mwcloud.gs.spark.datasource").load(containerName)

Community

  • Issues
    Use the GitHub issue function if you have any requests, questions, or bug reports.
  • PullRequest
    Use the GitHub pull request function if you want to contribute code. You'll need to agree GridDB Contributor License Agreement(CLA_rev1.1.pdf). By using the GitHub pull request function, you shall be deemed to have agreed to GridDB Contributor License Agreement.

License

The GridDB connector source is licensed under the Apache License, version 2.0.

Trademarks

Apache Spark, Apache Hadoop, Spark, and Hadoop are either registered trademarks or trademarks of the Apache Software Foundation in the United States and/or other countries.