forked from ocaml-flambda/flambda-backend
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathfloats.c
1187 lines (1061 loc) · 29.6 KB
/
floats.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**************************************************************************/
/* */
/* OCaml */
/* */
/* Xavier Leroy, projet Cristal, INRIA Rocquencourt */
/* */
/* Copyright 1996 Institut National de Recherche en Informatique et */
/* en Automatique. */
/* */
/* All rights reserved. This file is distributed under the terms of */
/* the GNU Lesser General Public License version 2.1, with the */
/* special exception on linking described in the file LICENSE. */
/* */
/**************************************************************************/
#define CAML_INTERNALS
/* The interface of this file is in "caml/mlvalues.h" and "caml/alloc.h" */
/* Needed for uselocale */
#define _XOPEN_SOURCE 700
/* Needed for strtod_l */
#define _GNU_SOURCE
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <float.h>
#include <limits.h>
#include "caml/alloc.h"
#include "caml/fail.h"
#include "caml/memory.h"
#include "caml/mlvalues.h"
#include "caml/misc.h"
#include "caml/reverse.h"
#include "caml/stacks.h"
#if defined(HAS_LOCALE) || defined(__MINGW32__)
#if defined(HAS_LOCALE_H) || defined(__MINGW32__)
#include <locale.h>
#endif
#if defined(HAS_XLOCALE_H)
#include <xlocale.h>
#endif
#if defined(_MSC_VER)
#ifndef locale_t
#define locale_t _locale_t
#endif
#ifndef freelocale
#define freelocale _free_locale
#endif
#ifndef strtod_l
#define strtod_l _strtod_l
#endif
#endif
#endif /* defined(HAS_LOCALE) */
#ifdef _MSC_VER
#include <float.h>
#ifndef isnan
#define isnan _isnan
#endif
#ifndef isfinite
#define isfinite _finite
#endif
#ifndef nextafter
#define nextafter _nextafter
#endif
#endif
#ifndef M_LOG2E
#define M_LOG2E 1.44269504088896340735992468100 /* log_2 (e) */
#endif
#ifdef ARCH_ALIGN_DOUBLE
CAMLexport double caml_Double_val(value val)
{
union { value v[2]; double d; } buffer;
CAMLassert(sizeof(double) == 2 * sizeof(value));
buffer.v[0] = Field(val, 0);
buffer.v[1] = Field(val, 1);
return buffer.d;
}
CAMLexport void caml_Store_double_val(value val, double dbl)
{
union { value v[2]; double d; } buffer;
CAMLassert(sizeof(double) == 2 * sizeof(value));
buffer.d = dbl;
Field(val, 0) = buffer.v[0];
Field(val, 1) = buffer.v[1];
}
#endif
/*
OCaml runtime itself doesn't call setlocale, i.e. it is using
standard "C" locale by default, but it is possible that
third-party code loaded into process does.
*/
#ifdef HAS_LOCALE
locale_t caml_locale = (locale_t)0;
#endif
#if defined(_MSC_VER) || defined(__MINGW32__)
/* there is no analogue to uselocale in MSVC so just set locale for thread */
#define USE_LOCALE setlocale(LC_NUMERIC,"C")
#define RESTORE_LOCALE do {} while(0)
#elif defined(HAS_LOCALE)
#define USE_LOCALE locale_t saved_locale = uselocale(caml_locale)
#define RESTORE_LOCALE uselocale(saved_locale)
#else
#define USE_LOCALE do {} while(0)
#define RESTORE_LOCALE do {} while(0)
#endif
void caml_init_locale(void)
{
#if defined(_MSC_VER) || defined(__MINGW32__)
_configthreadlocale(_ENABLE_PER_THREAD_LOCALE);
#endif
#ifdef HAS_LOCALE
if ((locale_t)0 == caml_locale)
{
#if defined(_MSC_VER)
caml_locale = _create_locale(LC_NUMERIC, "C");
#else
caml_locale = newlocale(LC_NUMERIC_MASK,"C",(locale_t)0);
#endif
}
#endif
}
void caml_free_locale(void)
{
#ifdef HAS_LOCALE
if ((locale_t)0 != caml_locale) freelocale(caml_locale);
caml_locale = (locale_t)0;
#endif
}
CAMLexport value caml_copy_double(double d)
{
value res;
#define Setup_for_gc
#define Restore_after_gc
Alloc_small(res, Double_wosize, Double_tag);
#undef Setup_for_gc
#undef Restore_after_gc
Store_double_val(res, d);
return res;
}
#ifndef FLAT_FLOAT_ARRAY
CAMLexport void caml_Store_double_array_field(value val, mlsize_t i, double dbl)
{
CAMLparam1 (val);
value d = caml_copy_double (dbl);
CAMLassert (Tag_val (val) != Double_array_tag);
caml_modify (&Field(val, i), d);
CAMLreturn0;
}
#endif /* ! FLAT_FLOAT_ARRAY */
CAMLprim value caml_format_float(value fmt, value arg)
{
value res;
double d = Double_val(arg);
#ifdef HAS_BROKEN_PRINTF
if (isfinite(d)) {
#endif
USE_LOCALE;
res = caml_alloc_sprintf(String_val(fmt), d);
RESTORE_LOCALE;
#ifdef HAS_BROKEN_PRINTF
} else {
if (isnan(d)) {
res = caml_copy_string("nan");
} else {
if (d > 0)
res = caml_copy_string("inf");
else
res = caml_copy_string("-inf");
}
}
#endif
return res;
}
CAMLprim value caml_hexstring_of_float(value arg, value vprec, value vstyle)
{
union { uint64_t i; double d; } u;
int sign, exp;
uint64_t m;
char buffer[64];
char * buf, * p;
intnat prec;
int d;
value res;
/* Allocate output buffer */
prec = Long_val(vprec);
/* 12 chars for sign, 0x, decimal point, exponent */
buf = (prec + 12 <= 64 ? buffer : caml_stat_alloc(prec + 12));
/* Extract sign, mantissa, and exponent */
u.d = Double_val(arg);
sign = u.i >> 63;
exp = (u.i >> 52) & 0x7FF;
m = u.i & (((uint64_t) 1 << 52) - 1);
/* Put sign */
p = buf;
if (sign) {
*p++ = '-';
} else {
switch (Int_val(vstyle)) {
case '+': *p++ = '+'; break;
case ' ': *p++ = ' '; break;
}
}
/* Treat special cases */
if (exp == 0x7FF) {
char * txt;
if (m == 0) txt = "infinity"; else txt = "nan";
memcpy(p, txt, strlen(txt));
p[strlen(txt)] = 0;
res = caml_copy_string(buf);
} else {
/* Output "0x" prefix */
*p++ = '0'; *p++ = 'x';
/* Normalize exponent and mantissa */
if (exp == 0) {
if (m != 0) exp = -1022; /* denormal */
} else {
exp = exp - 1023;
m = m | ((uint64_t) 1 << 52);
}
/* If a precision is given, and is small, round mantissa accordingly */
prec = Long_val(vprec);
if (prec >= 0 && prec < 13) {
int i = 52 - prec * 4;
uint64_t unit = (uint64_t) 1 << i;
uint64_t half = unit >> 1;
uint64_t mask = unit - 1;
uint64_t frac = m & mask;
m = m & ~mask;
/* Round to nearest, ties to even */
if (frac > half || (frac == half && (m & unit) != 0)) {
m += unit;
}
}
/* Leading digit */
d = m >> 52;
*p++ = (d < 10 ? d + '0' : d - 10 + 'a');
m = (m << 4) & (((uint64_t) 1 << 56) - 1);
/* Fractional digits. If a precision is given, print that number of
digits. Otherwise, print as many digits as needed to represent
the mantissa exactly. */
if (prec >= 0 ? prec > 0 : m != 0) {
*p++ = '.';
while (prec >= 0 ? prec > 0 : m != 0) {
d = m >> 52;
*p++ = (d < 10 ? d + '0' : d - 10 + 'a');
m = (m << 4) & (((uint64_t) 1 << 56) - 1);
prec--;
}
}
*p = 0;
/* Add exponent */
res = caml_alloc_sprintf("%sp%+d", buf, exp);
}
if (buf != buffer) caml_stat_free(buf);
return res;
}
static int caml_float_of_hex(const char * s, const char * end, double * res)
{
int64_t m = 0; /* the mantissa - top 60 bits at most */
int n_bits = 0; /* total number of bits read */
int m_bits = 0; /* number of bits in mantissa */
int x_bits = 0; /* number of bits after mantissa */
int dec_point = -1; /* bit count corresponding to decimal point */
/* -1 if no decimal point seen */
int exp = 0; /* exponent */
char * p; /* for converting the exponent */
double f;
while (s < end) {
char c = *s++;
switch (c) {
case '.':
if (dec_point >= 0) return -1; /* multiple decimal points */
dec_point = n_bits;
break;
case 'p': case 'P': {
long e;
if (*s == 0) return -1; /* nothing after exponent mark */
e = strtol(s, &p, 10);
if (p != end) return -1; /* ill-formed exponent */
/* Handle exponents larger than int by returning 0/infinity directly.
Mind that INT_MIN/INT_MAX are included in the test so as to capture
the overflow case of strtol on Win64 -- long and int have the same
size there. */
if (e <= INT_MIN) {
*res = 0.;
return 0;
}
else if (e >= INT_MAX) {
*res = m == 0 ? 0. : HUGE_VAL;
return 0;
}
/* regular exponent value */
exp = e;
s = p; /* stop at next loop iteration */
break;
}
default: { /* Nonzero digit */
int d;
if (c >= '0' && c <= '9') d = c - '0';
else if (c >= 'A' && c <= 'F') d = c - 'A' + 10;
else if (c >= 'a' && c <= 'f') d = c - 'a' + 10;
else return -1; /* bad digit */
n_bits += 4;
if (d == 0 && m == 0) break; /* leading zeros are skipped */
if (m_bits < 60) {
/* There is still room in m. Add this digit to the mantissa. */
m = (m << 4) + d;
m_bits += 4;
} else {
/* We've already collected 60 significant bits in m.
Now all we care about is whether there is a nonzero bit
after. In this case, round m to odd so that the later
rounding of m to FP produces the correct result. */
if (d != 0) m |= 1; /* round to odd */
x_bits += 4;
}
break;
}
}
}
if (n_bits == 0) return -1;
/* Convert mantissa to FP. We use a signed conversion because we can
(m has 60 bits at most) and because it is faster
on several architectures. */
f = (double) (int64_t) m;
/* Adjust exponent to take decimal point and extra digits into account */
{
int adj = x_bits;
if (dec_point >= 0) adj = adj + (dec_point - n_bits);
/* saturated addition exp + adj */
if (adj > 0 && exp > INT_MAX - adj)
exp = INT_MAX;
else if (adj < 0 && exp < INT_MIN - adj)
exp = INT_MIN;
else
exp = exp + adj;
}
/* Apply exponent if needed */
if (exp != 0) f = ldexp(f, exp);
/* Done! */
*res = f;
return 0;
}
CAMLprim value caml_float_of_string(value vs)
{
char parse_buffer[64];
char * buf, * dst, * end;
const char *src;
mlsize_t len;
int sign;
double d;
/* Remove '_' characters before conversion */
len = caml_string_length(vs);
buf = len < sizeof(parse_buffer) ? parse_buffer : caml_stat_alloc(len + 1);
src = String_val(vs);
dst = buf;
while (len--) {
char c = *src++;
if (c != '_') *dst++ = c;
}
*dst = 0;
if (dst == buf) goto error;
/* Check for hexadecimal FP constant */
src = buf;
sign = 1;
if (*src == '-') { sign = -1; src++; }
else if (*src == '+') { src++; };
if (src[0] == '0' && (src[1] == 'x' || src[1] == 'X')) {
/* Convert using our hexadecimal FP parser */
if (caml_float_of_hex(src + 2, dst, &d) == -1) goto error;
if (sign < 0) d = -d;
} else {
/* Convert using strtod */
#if defined(HAS_STRTOD_L) && defined(HAS_LOCALE)
d = strtod_l((const char *) buf, &end, caml_locale);
#else
USE_LOCALE;
d = strtod((const char *) buf, &end);
RESTORE_LOCALE;
#endif /* HAS_STRTOD_L */
if (end != dst) goto error;
}
if (buf != parse_buffer) caml_stat_free(buf);
return caml_copy_double(d);
error:
if (buf != parse_buffer) caml_stat_free(buf);
caml_failwith("float_of_string");
return Val_unit; /* not reached */
}
CAMLprim value caml_int_of_float(value f)
{
return Val_long((intnat) Double_val(f));
}
CAMLprim value caml_float_of_int(value n)
{
return caml_copy_double((double) Long_val(n));
}
CAMLprim value caml_neg_float(value f)
{
return caml_copy_double(- Double_val(f));
}
CAMLprim value caml_abs_float(value f)
{
return caml_copy_double(fabs(Double_val(f)));
}
CAMLprim value caml_add_float(value f, value g)
{
return caml_copy_double(Double_val(f) + Double_val(g));
}
CAMLprim value caml_sub_float(value f, value g)
{
return caml_copy_double(Double_val(f) - Double_val(g));
}
CAMLprim value caml_mul_float(value f, value g)
{
return caml_copy_double(Double_val(f) * Double_val(g));
}
CAMLprim value caml_div_float(value f, value g)
{
return caml_copy_double(Double_val(f) / Double_val(g));
}
CAMLprim value caml_exp_float(value f)
{
return caml_copy_double(exp(Double_val(f)));
}
CAMLexport double caml_exp2(double x)
{
#ifdef HAS_C99_FLOAT_OPS
return exp2(x);
#else
return pow(2, x);
#endif
}
CAMLprim value caml_exp2_float(value f)
{
return caml_copy_double(caml_exp2(Double_val(f)));
}
CAMLexport double caml_trunc(double x)
{
#ifdef HAS_C99_FLOAT_OPS
return trunc(x);
#else
return (x >= 0.0)? floor(x) : ceil(x);
#endif
}
CAMLprim value caml_trunc_float(value f)
{
return caml_copy_double(caml_trunc(Double_val(f)));
}
CAMLexport double caml_round(double f)
{
#ifdef HAS_WORKING_ROUND
return round(f);
#else
union { uint64_t i; double d; } u, pred_one_half; /* predecessor of 0.5 */
int e; /* exponent */
u.d = f;
e = (u.i >> 52) & 0x7ff; /* - 0x3ff for the actual exponent */
pred_one_half.i = 0x3FDFFFFFFFFFFFFF; /* 0x1.FFFFFFFFFFFFFp-2 */
if (isfinite(f) && f != 0.) {
if (e >= 52 + 0x3ff) return f; /* f is an integer already */
if (f > 0.0)
/* If we added 0.5 instead of its predecessor, then the
predecessor of 0.5 would be rounded to 1. instead of 0. */
return floor(f + pred_one_half.d);
else
return ceil(f - pred_one_half.d);
}
else
return f;
#endif
}
CAMLprim value caml_round_float(value f)
{
return caml_copy_double(caml_round(Double_val(f)));
}
CAMLprim value caml_floor_float(value f)
{
return caml_copy_double(floor(Double_val(f)));
}
CAMLexport double caml_nextafter(double x, double y)
{
return nextafter(x, y);
}
CAMLprim value caml_nextafter_float(value x, value y)
{
return caml_copy_double(caml_nextafter(Double_val(x), Double_val(y)));
}
#ifndef HAS_WORKING_FMA
union double_as_int64 { double d; uint64_t i; };
#define IEEE754_DOUBLE_BIAS 0x3ff
#define IEEE_EXPONENT(N) (((N) >> 52) & 0x7ff)
#define IEEE_NEGATIVE(N) ((N) >> 63)
//C99 hexa float literals cannot be used, use pow() instead.
#define FL53 (pow(2,53)) //0x1p53
#define FLM53 (pow(2,-53)) //0x1p-53
#define FL54 (pow(2,54)) //0x1p54
#define FLM54 (pow(2,-54)) //0x1p-54
#define FL108 (pow(2,108)) //0x1p108
#define FLM108 (pow(2,-108)) //0x1p-108
#define FLM1074 (pow(2,-1074)) //0x1p-1074
#endif
CAMLexport double caml_fma(double x, double y, double z)
{
#ifdef HAS_WORKING_FMA
return fma(x, y, z);
#else // Emulation of FMA, from S. Boldo and G. Melquiond, "Emulation
// of a FMA and Correctly Rounded Sums: Proved Algorithms Using
// Rounding to Odd," in IEEE Transactions on Computers, vol. 57,
// no. 4, pp. 462-471, April 2008. Special cases implementation
// comes from glibc's IEEE754 FMA emulation.
// Only valid for double precision and round-to-nearest mode.
union double_as_int64 u, v, w;
union double_as_int64 ora;
double mh, ml, xh, xl, yh, yl, t;
double ah, al;
double orah, oral;
double t1, t2;
double tiny;
int neg, adjust = 0;
u.d = x;
v.d = y;
w.d = z;
if ( IEEE_EXPONENT(u.i) + IEEE_EXPONENT(v.i) >= 0x7FF +
IEEE754_DOUBLE_BIAS - DBL_MANT_DIG
|| IEEE_EXPONENT(u.i) >= 0x7ff - DBL_MANT_DIG
|| IEEE_EXPONENT(v.i) >= 0x7ff - DBL_MANT_DIG
|| IEEE_EXPONENT(w.i) >= 0x7ff - DBL_MANT_DIG
|| IEEE_EXPONENT(u.i) + IEEE_EXPONENT(v.i) <=
IEEE754_DOUBLE_BIAS + DBL_MANT_DIG )
{
/* If z is Inf, but x and y are finite, the result should be z
* rather than NaN. */
if (IEEE_EXPONENT(w.i) == 0x7ff &&
IEEE_EXPONENT(u.i) != 0x7ff &&
IEEE_EXPONENT(v.i) != 0x7ff)
return (z + x) + y;
/* If z is zero and x and y are nonzero, compute the result as
x * y to avoid the wrong sign of a zero result if x * y
underflows to 0. */
if (z == 0 && x != 0 && y != 0)
return x * y;
/* If x or y or z is Inf/NaN, or if x * y is zero, compute as
x * y + z. */
if (IEEE_EXPONENT(u.i) == 0x7ff
|| IEEE_EXPONENT(v.i) == 0x7ff
|| IEEE_EXPONENT(w.i) == 0x7ff
|| x == 0
|| y == 0)
return x * y + z;
/* If fma will certainly overflow, compute as x * y. */
if ((IEEE_EXPONENT(u.i) + IEEE_EXPONENT(v.i))
> 0x7ff + IEEE754_DOUBLE_BIAS)
return x * y;
/* If x * y is less than 1/4 of DBL_TRUE_MIN, neither the result
nor whether there is underflow depends on its exact value,
only on its sign. */
if (IEEE_EXPONENT(u.i) + IEEE_EXPONENT(v.i)
< IEEE754_DOUBLE_BIAS - DBL_MANT_DIG - 2)
{
neg = IEEE_NEGATIVE(u.i) ^ IEEE_NEGATIVE(v.i) ;
tiny = neg ? -FLM1074 : FLM1074;
if (IEEE_EXPONENT(w.i) >= 3)
return tiny + z;
/* Scaling up, adding TINY and scaling down produces the
correct result, because in round-to-nearest mode adding
TINY has no effect and in other modes double rounding is
harmless. But it may not produce required underflow
exceptions. */
v.d = z * FL54 + tiny;
return v.d * FLM54;
}
if (IEEE_EXPONENT(u.i) + IEEE_EXPONENT(v.i)
>= 0x7ff + IEEE754_DOUBLE_BIAS - DBL_MANT_DIG)
{
/* Compute 1p-53 times smaller result and multiply at the
end. */
if (IEEE_EXPONENT(u.i) > IEEE_EXPONENT(v.i))
x *= FLM53;
else
y *= FLM53;
/* If x + y exponent is very large and z exponent is very small,
it doesn't matter if we don't adjust it. */
if (IEEE_EXPONENT(w.i) > DBL_MANT_DIG)
z *= FLM53;
adjust = 1;
}
else if (IEEE_EXPONENT(w.i) >= 0x7ff - DBL_MANT_DIG)
{
/* Similarly. If z exponent is very large and x and y
exponents are very small, adjust them up to avoid
spurious underflows, rather than down. */
if (IEEE_EXPONENT(u.i) + IEEE_EXPONENT(v.i)
<= IEEE754_DOUBLE_BIAS + 2 * DBL_MANT_DIG)
{
if (IEEE_EXPONENT(u.i) > IEEE_EXPONENT(v.i))
x *= FL108;
else
y *= FL108;
}
else if (IEEE_EXPONENT(u.i) > IEEE_EXPONENT(v.i))
{
if (IEEE_EXPONENT(u.i) > DBL_MANT_DIG)
x *= FLM53;
}
else if (IEEE_EXPONENT(v.i) > DBL_MANT_DIG)
y *= FLM53;
z *= FLM53;
adjust = 1;
}
else if (IEEE_EXPONENT(u.i) >= 0x7ff - DBL_MANT_DIG)
{
x *= FLM53;
y *= FL53;
}
else if (IEEE_EXPONENT(v.i) >= 0x7ff - DBL_MANT_DIG)
{
y *= FLM53;
x *= FL53;
}
else /* if (IEEE_EXPONENT(u.i) + IEEE_EXPONENT(v.i) <=
IEEE754_DOUBLE_BIAS + DBL_MANT_DIG) */
{
if (IEEE_EXPONENT(u.i) > IEEE_EXPONENT(v.i))
x *= FL108;
else
y *= FL108;
if (IEEE_EXPONENT(w.i) <= 4 * DBL_MANT_DIG + 6)
{
z *= FL108;
adjust = -1;
}
}
}
/* Ensure correct sign of exact 0 + 0. */
if ((x == 0 || y == 0) && z == 0)
return x * y + z;
// Error-free multiplication: mh + ml = x * y
mh = x * y;
t = x * 134217729.0;
xh = t - (t - x);
xl = x - xh;
t = y * 134217729.0;
yh = t - (t - y);
yl = y - yh;
ml = xl * yl - (((mh - xh * yh) - xl * yh) - xh * yl);
// Error-free addition: ah + al = z + mh
ah = z + mh;
t = ah - z;
al = (z - (ah - t)) + (mh - t);
/* If the result is an exact zero, ensure it has the correct sign. */
if (ah == 0 && ml == 0)
return z + mh;
// Normalize ah, al, ml.
t1 = al + ml;
t = t1 - al;
t2 = (al - (t1 - t)) + (ml - t);
al = t1;
ml = t2;
t1 = ah + al;
t = t1 - ah;
t2 = (ah - (t1 - t)) + (al - t);
ah = t1;
al = t2;
// Odd-rounded addition: ora = al + ml.
orah = al + ml;
oral = (al - orah) + ml;
if ( oral != 0.0 )
{
ora.d = orah;
if ( !(ora.i & 1) )
{
if ( (oral > 0.0) ^ (orah < 0.0) )
ora.i++;
else
ora.i--;
orah = ora.d;
}
}
// Rounded addition: ra = ah + orah.
if ( adjust > 0 )
return (ah + orah) * FL53;
else if ( adjust < 0 )
return (ah + orah) * FLM108;
else
return ah + orah;
#endif
}
CAMLprim value caml_fma_float(value f1, value f2, value f3)
{
return caml_copy_double(caml_fma(Double_val(f1),
Double_val(f2), Double_val(f3)));
}
CAMLprim value caml_fmod_float(value f1, value f2)
{
return caml_copy_double(fmod(Double_val(f1), Double_val(f2)));
}
CAMLprim value caml_frexp_float(value f)
{
CAMLparam0 ();
CAMLlocal1 (mantissa);
value res;
int exponent;
mantissa = caml_copy_double(frexp (Double_val(f), &exponent));
res = caml_alloc_small(2, 0);
Field(res, 0) = mantissa;
Field(res, 1) = Val_int(exponent);
CAMLreturn (res);
}
// Seems dumb but intnat could not correspond to int type.
double caml_ldexp_float_unboxed(double f, intnat i)
{
return ldexp(f, (int) i);
}
CAMLprim value caml_ldexp_float(value f, value i)
{
return caml_copy_double(ldexp(Double_val(f), Int_val(i)));
}
CAMLprim value caml_log_float(value f)
{
return caml_copy_double(log(Double_val(f)));
}
CAMLprim value caml_log10_float(value f)
{
return caml_copy_double(log10(Double_val(f)));
}
CAMLexport double caml_log2(double x)
{
#ifdef HAS_C99_FLOAT_OPS
return log2(x);
#else
return log(x) * M_LOG2E;
#endif
}
CAMLprim value caml_log2_float(value f)
{
return caml_copy_double(caml_log2(Double_val(f)));
}
CAMLprim value caml_modf_float(value f)
{
CAMLparam0 ();
CAMLlocal2 (quo, rem);
value res;
double frem;
quo = caml_copy_double(modf (Double_val(f), &frem));
rem = caml_copy_double(frem);
res = caml_alloc_small(2, 0);
Field(res, 0) = quo;
Field(res, 1) = rem;
CAMLreturn (res);
}
CAMLprim value caml_sqrt_float(value f)
{
return caml_copy_double(sqrt(Double_val(f)));
}
CAMLexport double caml_cbrt(double x)
{
#ifdef HAS_C99_FLOAT_OPS
return cbrt(x);
#else
static const double third = 1.0 / 3.0;
double res = exp(third * log(fabs(x)));
return (x >= 0) ? res : -res;
#endif
}
CAMLprim value caml_cbrt_float(value f)
{
return caml_copy_double(caml_cbrt(Double_val(f)));
}
CAMLprim value caml_power_float(value f, value g)
{
return caml_copy_double(pow(Double_val(f), Double_val(g)));
}
CAMLprim value caml_sin_float(value f)
{
return caml_copy_double(sin(Double_val(f)));
}
CAMLprim value caml_sinh_float(value f)
{
return caml_copy_double(sinh(Double_val(f)));
}
CAMLprim value caml_cos_float(value f)
{
return caml_copy_double(cos(Double_val(f)));
}
CAMLprim value caml_cosh_float(value f)
{
return caml_copy_double(cosh(Double_val(f)));
}
CAMLprim value caml_tan_float(value f)
{
return caml_copy_double(tan(Double_val(f)));
}
CAMLprim value caml_tanh_float(value f)
{
return caml_copy_double(tanh(Double_val(f)));
}
CAMLprim value caml_asin_float(value f)
{
return caml_copy_double(asin(Double_val(f)));
}
CAMLexport double caml_asinh(double x)
{
#ifdef HAS_C99_FLOAT_OPS
return asinh(x);
#else
return log(x + sqrt(x * x + 1.0));
#endif
}
CAMLprim value caml_asinh_float(value f)
{
return caml_copy_double(caml_asinh(Double_val(f)));
}
CAMLprim value caml_acos_float(value f)
{
return caml_copy_double(acos(Double_val(f)));
}
CAMLexport double caml_acosh(double x)
{
#ifdef HAS_C99_FLOAT_OPS
return acosh(x);
#else
return log(x + sqrt(x * x - 1.0));
#endif
}
CAMLprim value caml_acosh_float(value f)
{
return caml_copy_double(caml_acosh(Double_val(f)));
}
CAMLprim value caml_atan_float(value f)
{
return caml_copy_double(atan(Double_val(f)));
}
CAMLexport double caml_atanh(double x)
{
#ifdef HAS_C99_FLOAT_OPS
return atanh(x);
#else
return 0.5 * log((1.0 + x) / (1.0 - x));
#endif
}
CAMLprim value caml_atanh_float(value f)
{
return caml_copy_double(caml_atanh(Double_val(f)));
}
CAMLprim value caml_atan2_float(value f, value g)
{
return caml_copy_double(atan2(Double_val(f), Double_val(g)));
}
CAMLprim value caml_ceil_float(value f)
{
return caml_copy_double(ceil(Double_val(f)));
}
CAMLexport double caml_hypot(double x, double y)
{
#ifdef HAS_C99_FLOAT_OPS
return hypot(x, y);
#else
double tmp, ratio;
x = fabs(x); y = fabs(y);
if (x != x) /* x is NaN */
return y > DBL_MAX ? y : x; /* PR#6321 */
if (y != y) /* y is NaN */
return x > DBL_MAX ? x : y; /* PR#6321 */
if (x < y) { tmp = x; x = y; y = tmp; }
if (x == 0.0) return 0.0;
ratio = y / x;
return x * sqrt(1.0 + ratio * ratio);
#endif
}
CAMLprim value caml_hypot_float(value f, value g)
{
return caml_copy_double(caml_hypot(Double_val(f), Double_val(g)));
}
/* These emulations of expm1() and log1p() are due to William Kahan.
See http://www.plunk.org/~hatch/rightway.php */
CAMLexport double caml_expm1(double x)
{
#ifdef HAS_C99_FLOAT_OPS
return expm1(x);
#else
double u = exp(x);
if (u == 1.)
return x;
if (u - 1. == -1.)
return -1.;
return (u - 1.) * x / log(u);
#endif
}
CAMLexport double caml_log1p(double x)
{
#ifdef HAS_C99_FLOAT_OPS
return log1p(x);
#else
double u = 1. + x;
if (u == 1.)
return x;
else