-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathxz_dec_bcj.c
574 lines (489 loc) · 13.6 KB
/
xz_dec_bcj.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
/*
* Branch/Call/Jump (BCJ) filter decoders
*
* Authors: Lasse Collin <lasse.collin@tukaani.org>
* Igor Pavlov <http://7-zip.org/>
*
* This file has been put into the public domain.
* You can do whatever you want with this file.
*/
#include "xz_private.h"
/*
* The rest of the file is inside this ifdef. It makes things a little more
* convenient when building without support for any BCJ filters.
*/
#ifdef XZ_DEC_BCJ
struct xz_dec_bcj {
/* Type of the BCJ filter being used */
enum {
BCJ_X86 = 4, /* x86 or x86-64 */
BCJ_POWERPC = 5, /* Big endian only */
BCJ_IA64 = 6, /* Big or little endian */
BCJ_ARM = 7, /* Little endian only */
BCJ_ARMTHUMB = 8, /* Little endian only */
BCJ_SPARC = 9 /* Big or little endian */
} type;
/*
* Return value of the next filter in the chain. We need to preserve
* this information across calls, because we must not call the next
* filter anymore once it has returned XZ_STREAM_END.
*/
enum xz_ret ret;
/* True if we are operating in single-call mode. */
bool single_call;
/*
* Absolute position relative to the beginning of the uncompressed
* data (in a single .xz Block). We care only about the lowest 32
* bits so this doesn't need to be uint64_t even with big files.
*/
uint32_t pos;
/* x86 filter state */
uint32_t x86_prev_mask;
/* Temporary space to hold the variables from struct xz_buf */
uint8_t *out;
size_t out_pos;
size_t out_size;
struct {
/* Amount of already filtered data in the beginning of buf */
size_t filtered;
/* Total amount of data currently stored in buf */
size_t size;
/*
* Buffer to hold a mix of filtered and unfiltered data. This
* needs to be big enough to hold Alignment + 2 * Look-ahead:
*
* Type Alignment Look-ahead
* x86 1 4
* PowerPC 4 0
* IA-64 16 0
* ARM 4 0
* ARM-Thumb 2 2
* SPARC 4 0
*/
uint8_t buf[16];
} temp;
};
#ifdef XZ_DEC_X86
/*
* This is used to test the most significant byte of a memory address
* in an x86 instruction.
*/
static inline int bcj_x86_test_msbyte(uint8_t b)
{
return b == 0x00 || b == 0xFF;
}
static size_t bcj_x86(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
{
static const bool mask_to_allowed_status[8]
= { true, true, true, false, true, false, false, false };
static const uint8_t mask_to_bit_num[8] = { 0, 1, 2, 2, 3, 3, 3, 3 };
size_t i;
size_t prev_pos = (size_t)-1;
uint32_t prev_mask = s->x86_prev_mask;
uint32_t src;
uint32_t dest;
uint32_t j;
uint8_t b;
if (size <= 4)
return 0;
size -= 4;
for (i = 0; i < size; ++i) {
if ((buf[i] & 0xFE) != 0xE8)
continue;
prev_pos = i - prev_pos;
if (prev_pos > 3) {
prev_mask = 0;
} else {
prev_mask = (prev_mask << (prev_pos - 1)) & 7;
if (prev_mask != 0) {
b = buf[i + 4 - mask_to_bit_num[prev_mask]];
if (!mask_to_allowed_status[prev_mask]
|| bcj_x86_test_msbyte(b)) {
prev_pos = i;
prev_mask = (prev_mask << 1) | 1;
continue;
}
}
}
prev_pos = i;
if (bcj_x86_test_msbyte(buf[i + 4])) {
src = get_unaligned_le32(buf + i + 1);
while (true) {
dest = src - (s->pos + (uint32_t)i + 5);
if (prev_mask == 0)
break;
j = mask_to_bit_num[prev_mask] * 8;
b = (uint8_t)(dest >> (24 - j));
if (!bcj_x86_test_msbyte(b))
break;
src = dest ^ (((uint32_t)1 << (32 - j)) - 1);
}
dest &= 0x01FFFFFF;
dest |= (uint32_t)0 - (dest & 0x01000000);
put_unaligned_le32(dest, buf + i + 1);
i += 4;
} else {
prev_mask = (prev_mask << 1) | 1;
}
}
prev_pos = i - prev_pos;
s->x86_prev_mask = prev_pos > 3 ? 0 : prev_mask << (prev_pos - 1);
return i;
}
#endif
#ifdef XZ_DEC_POWERPC
static size_t bcj_powerpc(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
{
size_t i;
uint32_t instr;
for (i = 0; i + 4 <= size; i += 4) {
instr = get_unaligned_be32(buf + i);
if ((instr & 0xFC000003) == 0x48000001) {
instr &= 0x03FFFFFC;
instr -= s->pos + (uint32_t)i;
instr &= 0x03FFFFFC;
instr |= 0x48000001;
put_unaligned_be32(instr, buf + i);
}
}
return i;
}
#endif
#ifdef XZ_DEC_IA64
static size_t bcj_ia64(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
{
static const uint8_t branch_table[32] = {
0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0,
4, 4, 6, 6, 0, 0, 7, 7,
4, 4, 0, 0, 4, 4, 0, 0
};
/*
* The local variables take a little bit stack space, but it's less
* than what LZMA2 decoder takes, so it doesn't make sense to reduce
* stack usage here without doing that for the LZMA2 decoder too.
*/
/* Loop counters */
size_t i;
size_t j;
/* Instruction slot (0, 1, or 2) in the 128-bit instruction word */
uint32_t slot;
/* Bitwise offset of the instruction indicated by slot */
uint32_t bit_pos;
/* bit_pos split into byte and bit parts */
uint32_t byte_pos;
uint32_t bit_res;
/* Address part of an instruction */
uint32_t addr;
/* Mask used to detect which instructions to convert */
uint32_t mask;
/* 41-bit instruction stored somewhere in the lowest 48 bits */
uint64_t instr;
/* Instruction normalized with bit_res for easier manipulation */
uint64_t norm;
for (i = 0; i + 16 <= size; i += 16) {
mask = branch_table[buf[i] & 0x1F];
for (slot = 0, bit_pos = 5; slot < 3; ++slot, bit_pos += 41) {
if (((mask >> slot) & 1) == 0)
continue;
byte_pos = bit_pos >> 3;
bit_res = bit_pos & 7;
instr = 0;
for (j = 0; j < 6; ++j)
instr |= (uint64_t)(buf[i + j + byte_pos])
<< (8 * j);
norm = instr >> bit_res;
if (((norm >> 37) & 0x0F) == 0x05
&& ((norm >> 9) & 0x07) == 0) {
addr = (norm >> 13) & 0x0FFFFF;
addr |= ((uint32_t)(norm >> 36) & 1) << 20;
addr <<= 4;
addr -= s->pos + (uint32_t)i;
addr >>= 4;
norm &= ~((uint64_t)0x8FFFFF << 13);
norm |= (uint64_t)(addr & 0x0FFFFF) << 13;
norm |= (uint64_t)(addr & 0x100000)
<< (36 - 20);
instr &= (1 << bit_res) - 1;
instr |= norm << bit_res;
for (j = 0; j < 6; j++)
buf[i + j + byte_pos]
= (uint8_t)(instr >> (8 * j));
}
}
}
return i;
}
#endif
#ifdef XZ_DEC_ARM
static size_t bcj_arm(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
{
size_t i;
uint32_t addr;
for (i = 0; i + 4 <= size; i += 4) {
if (buf[i + 3] == 0xEB) {
addr = (uint32_t)buf[i] | ((uint32_t)buf[i + 1] << 8)
| ((uint32_t)buf[i + 2] << 16);
addr <<= 2;
addr -= s->pos + (uint32_t)i + 8;
addr >>= 2;
buf[i] = (uint8_t)addr;
buf[i + 1] = (uint8_t)(addr >> 8);
buf[i + 2] = (uint8_t)(addr >> 16);
}
}
return i;
}
#endif
#ifdef XZ_DEC_ARMTHUMB
static size_t bcj_armthumb(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
{
size_t i;
uint32_t addr;
for (i = 0; i + 4 <= size; i += 2) {
if ((buf[i + 1] & 0xF8) == 0xF0
&& (buf[i + 3] & 0xF8) == 0xF8) {
addr = (((uint32_t)buf[i + 1] & 0x07) << 19)
| ((uint32_t)buf[i] << 11)
| (((uint32_t)buf[i + 3] & 0x07) << 8)
| (uint32_t)buf[i + 2];
addr <<= 1;
addr -= s->pos + (uint32_t)i + 4;
addr >>= 1;
buf[i + 1] = (uint8_t)(0xF0 | ((addr >> 19) & 0x07));
buf[i] = (uint8_t)(addr >> 11);
buf[i + 3] = (uint8_t)(0xF8 | ((addr >> 8) & 0x07));
buf[i + 2] = (uint8_t)addr;
i += 2;
}
}
return i;
}
#endif
#ifdef XZ_DEC_SPARC
static size_t bcj_sparc(struct xz_dec_bcj *s, uint8_t *buf, size_t size)
{
size_t i;
uint32_t instr;
for (i = 0; i + 4 <= size; i += 4) {
instr = get_unaligned_be32(buf + i);
if ((instr >> 22) == 0x100 || (instr >> 22) == 0x1FF) {
instr <<= 2;
instr -= s->pos + (uint32_t)i;
instr >>= 2;
instr = ((uint32_t)0x40000000 - (instr & 0x400000))
| 0x40000000 | (instr & 0x3FFFFF);
put_unaligned_be32(instr, buf + i);
}
}
return i;
}
#endif
/*
* Apply the selected BCJ filter. Update *pos and s->pos to match the amount
* of data that got filtered.
*
* NOTE: This is implemented as a switch statement to avoid using function
* pointers, which could be problematic in the kernel boot code, which must
* avoid pointers to static data (at least on x86).
*/
static void bcj_apply(struct xz_dec_bcj *s,
uint8_t *buf, size_t *pos, size_t size)
{
size_t filtered;
buf += *pos;
size -= *pos;
switch (s->type) {
#ifdef XZ_DEC_X86
case BCJ_X86:
filtered = bcj_x86(s, buf, size);
break;
#endif
#ifdef XZ_DEC_POWERPC
case BCJ_POWERPC:
filtered = bcj_powerpc(s, buf, size);
break;
#endif
#ifdef XZ_DEC_IA64
case BCJ_IA64:
filtered = bcj_ia64(s, buf, size);
break;
#endif
#ifdef XZ_DEC_ARM
case BCJ_ARM:
filtered = bcj_arm(s, buf, size);
break;
#endif
#ifdef XZ_DEC_ARMTHUMB
case BCJ_ARMTHUMB:
filtered = bcj_armthumb(s, buf, size);
break;
#endif
#ifdef XZ_DEC_SPARC
case BCJ_SPARC:
filtered = bcj_sparc(s, buf, size);
break;
#endif
default:
/* Never reached but silence compiler warnings. */
filtered = 0;
break;
}
*pos += filtered;
s->pos += filtered;
}
/*
* Flush pending filtered data from temp to the output buffer.
* Move the remaining mixture of possibly filtered and unfiltered
* data to the beginning of temp.
*/
static void bcj_flush(struct xz_dec_bcj *s, struct xz_buf *b)
{
size_t copy_size;
copy_size = min_t(size_t, s->temp.filtered, b->out_size - b->out_pos);
memcpy(b->out + b->out_pos, s->temp.buf, copy_size);
b->out_pos += copy_size;
s->temp.filtered -= copy_size;
s->temp.size -= copy_size;
memmove(s->temp.buf, s->temp.buf + copy_size, s->temp.size);
}
/*
* The BCJ filter functions are primitive in sense that they process the
* data in chunks of 1-16 bytes. To hide this issue, this function does
* some buffering.
*/
XZ_EXTERN enum xz_ret xz_dec_bcj_run(struct xz_dec_bcj *s,
struct xz_dec_lzma2 *lzma2,
struct xz_buf *b)
{
size_t out_start;
/*
* Flush pending already filtered data to the output buffer. Return
* immediatelly if we couldn't flush everything, or if the next
* filter in the chain had already returned XZ_STREAM_END.
*/
if (s->temp.filtered > 0) {
bcj_flush(s, b);
if (s->temp.filtered > 0)
return XZ_OK;
if (s->ret == XZ_STREAM_END)
return XZ_STREAM_END;
}
/*
* If we have more output space than what is currently pending in
* temp, copy the unfiltered data from temp to the output buffer
* and try to fill the output buffer by decoding more data from the
* next filter in the chain. Apply the BCJ filter on the new data
* in the output buffer. If everything cannot be filtered, copy it
* to temp and rewind the output buffer position accordingly.
*
* This needs to be always run when temp.size == 0 to handle a special
* case where the output buffer is full and the next filter has no
* more output coming but hasn't returned XZ_STREAM_END yet.
*/
if (s->temp.size < b->out_size - b->out_pos || s->temp.size == 0) {
out_start = b->out_pos;
memcpy(b->out + b->out_pos, s->temp.buf, s->temp.size);
b->out_pos += s->temp.size;
s->ret = xz_dec_lzma2_run(lzma2, b);
if (s->ret != XZ_STREAM_END
&& (s->ret != XZ_OK || s->single_call))
return s->ret;
bcj_apply(s, b->out, &out_start, b->out_pos);
/*
* As an exception, if the next filter returned XZ_STREAM_END,
* we can do that too, since the last few bytes that remain
* unfiltered are meant to remain unfiltered.
*/
if (s->ret == XZ_STREAM_END)
return XZ_STREAM_END;
s->temp.size = b->out_pos - out_start;
b->out_pos -= s->temp.size;
memcpy(s->temp.buf, b->out + b->out_pos, s->temp.size);
/*
* If there wasn't enough input to the next filter to fill
* the output buffer with unfiltered data, there's no point
* to try decoding more data to temp.
*/
if (b->out_pos + s->temp.size < b->out_size)
return XZ_OK;
}
/*
* We have unfiltered data in temp. If the output buffer isn't full
* yet, try to fill the temp buffer by decoding more data from the
* next filter. Apply the BCJ filter on temp. Then we hopefully can
* fill the actual output buffer by copying filtered data from temp.
* A mix of filtered and unfiltered data may be left in temp; it will
* be taken care on the next call to this function.
*/
if (b->out_pos < b->out_size) {
/* Make b->out{,_pos,_size} temporarily point to s->temp. */
s->out = b->out;
s->out_pos = b->out_pos;
s->out_size = b->out_size;
b->out = s->temp.buf;
b->out_pos = s->temp.size;
b->out_size = sizeof(s->temp.buf);
s->ret = xz_dec_lzma2_run(lzma2, b);
s->temp.size = b->out_pos;
b->out = s->out;
b->out_pos = s->out_pos;
b->out_size = s->out_size;
if (s->ret != XZ_OK && s->ret != XZ_STREAM_END)
return s->ret;
bcj_apply(s, s->temp.buf, &s->temp.filtered, s->temp.size);
/*
* If the next filter returned XZ_STREAM_END, we mark that
* everything is filtered, since the last unfiltered bytes
* of the stream are meant to be left as is.
*/
if (s->ret == XZ_STREAM_END)
s->temp.filtered = s->temp.size;
bcj_flush(s, b);
if (s->temp.filtered > 0)
return XZ_OK;
}
return s->ret;
}
XZ_EXTERN struct xz_dec_bcj *xz_dec_bcj_create(bool single_call)
{
struct xz_dec_bcj *s = kmalloc(sizeof(*s), GFP_KERNEL);
if (s != NULL)
s->single_call = single_call;
return s;
}
XZ_EXTERN enum xz_ret xz_dec_bcj_reset(struct xz_dec_bcj *s, uint8_t id)
{
switch (id) {
#ifdef XZ_DEC_X86
case BCJ_X86:
#endif
#ifdef XZ_DEC_POWERPC
case BCJ_POWERPC:
#endif
#ifdef XZ_DEC_IA64
case BCJ_IA64:
#endif
#ifdef XZ_DEC_ARM
case BCJ_ARM:
#endif
#ifdef XZ_DEC_ARMTHUMB
case BCJ_ARMTHUMB:
#endif
#ifdef XZ_DEC_SPARC
case BCJ_SPARC:
#endif
break;
default:
/* Unsupported Filter ID */
return XZ_OPTIONS_ERROR;
}
s->type = id;
s->ret = XZ_OK;
s->pos = 0;
s->x86_prev_mask = 0;
s->temp.filtered = 0;
s->temp.size = 0;
return XZ_OK;
}
#endif