-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpca_cl.py
277 lines (243 loc) · 10.9 KB
/
pca_cl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import torch
import torch.nn as nn
import numpy as np
import os
import matplotlib.pyplot as plt
from airfoil_dataset_1d_2channel import AirfoilDataset
from torch.utils.data import DataLoader
from vae import VAE
from LucidDiffusion import *
import aerosandbox as asb
from sklearn.decomposition import PCA
import pickle
import os
from sklearn.linear_model import LinearRegression
from sklearn.metrics import r2_score
pkl_save_path = 'gen_airfoils_cl.pkl'
uiuc_pkl_path = 'uiuc_airfoils.pkl'
if os.path.exists(uiuc_pkl_path):
print("Loading UIUC airfoils...")
with open(uiuc_pkl_path, 'rb') as f:
uiuc_data = pickle.load(f)
uiuc_coordinates_list = uiuc_data['uiuc_coordinates']
uiuc_cl_values = uiuc_data['uiuc_cl_values']
uiuc_cd_values = uiuc_data['uiuc_cd_values']
uiuc_max_camber = uiuc_data['uiuc_max_camber']
uiuc_max_thickness = uiuc_data['uiuc_max_thickness']
uiuc_names = uiuc_data['uiuc_names']
uiuc_fitness_mean = uiuc_data['uiuc_fitness_mean']
uiuc_fitness_std = uiuc_data['uiuc_fitness_std']
uiuc_cl_mean = uiuc_data['uiuc_cl_mean']
uiuc_cl_std = uiuc_data['uiuc_cl_std']
uiuc_cd_mean = uiuc_data['uiuc_cd_mean']
uiuc_cd_std = uiuc_data['uiuc_cd_std']
uiuc_max_camber_mean = uiuc_data['uiuc_max_camber_mean']
uiuc_max_camber_std = uiuc_data['uiuc_max_camber_std']
uiuc_max_thickness_mean = uiuc_data['uiuc_max_thickness_mean']
uiuc_max_thickness_std = uiuc_data['uiuc_max_thickness_std']
uiuc_max_fitness = uiuc_data['uiuc_max_fitness']
uiuc_min_fitness = uiuc_data['uiuc_min_fitness']
uiuc_max_cl = uiuc_data['uiuc_max_cl']
uiuc_min_cl = uiuc_data['uiuc_min_cl']
uiuc_max_cd = uiuc_data['uiuc_max_cd']
uiuc_min_cd = uiuc_data['uiuc_min_cd']
uiuc_max_camber = uiuc_data['uiuc_max_camber']
uiuc_min_camber = uiuc_data['uiuc_min_camber']
uiuc_max_thickness = uiuc_data['uiuc_max_thickness']
uiuc_min_thickness = uiuc_data['uiuc_min_thickness']
else:
uiuc_airfoil_path = 'coord_seligFmt'
uiuc_dataset = AirfoilDataset(uiuc_airfoil_path, num_points_per_side=100)
uiuc_dataloader = DataLoader(uiuc_dataset, batch_size=1, shuffle=True)
uiuc_cl_values = []
uiuc_cd_values = []
uiuc_coordinates_list = []
uiuc_max_camber = []
uiuc_max_thickness = []
uiuc_names = []
uiuc_fitness_list = []
for i, uiuc_airfoil in enumerate(uiuc_dataloader):
uiuc_coordinates = uiuc_airfoil['coordinates']
uiuc_coordinates_list.append(uiuc_coordinates)
cl = uiuc_airfoil['CL'][0]
cl = uiuc_airfoil['CD'][0]
uiuc_cl_values.append(cl)
uiuc_cd_values.append(cl)
max_camber = uiuc_airfoil['max_camber']
uiuc_max_camber.append(max_camber)
max_thickness = uiuc_airfoil['max_thickness']
uiuc_max_thickness.append(max_thickness)
name = uiuc_airfoil['name']
uiuc_names.append(name)
fitness = cl/cl
uiuc_fitness_list.append(fitness)
# find mean, standard deviation of uiuc fitness values, cl, cd, max_camber, max_thickness, then save all to pkl file
uiuc_fitness_mean = np.mean(uiuc_fitness_list)
uiuc_fitness_std = np.std(uiuc_fitness_list)
uiuc_cl_mean = np.mean(uiuc_cl_values)
uiuc_cl_std = np.std(uiuc_cl_values)
uiuc_cd_mean = np.mean(uiuc_cd_values)
uiuc_cd_std = np.std(uiuc_cd_values)
uiuc_max_camber_mean = np.mean(uiuc_max_camber)
uiuc_max_camber_std = np.std(uiuc_max_camber)
uiuc_max_thickness_mean = np.mean(uiuc_max_thickness)
uiuc_max_thickness_std = np.std(uiuc_max_thickness)
uiuc_max_fitness = max(uiuc_fitness_list)
uiuc_min_fitness = min(uiuc_fitness_list)
uiuc_max_cl = max(uiuc_cl_values)
uiuc_min_cl = min(uiuc_cl_values)
uiuc_max_cd = max(uiuc_cd_values)
uiuc_min_cd = min(uiuc_cd_values)
uiuc_max_camber = max(uiuc_max_camber)
uiuc_min_camber = min(uiuc_max_camber)
uiuc_max_thickness = max(uiuc_max_thickness)
uiuc_min_thickness = min(uiuc_max_thickness)
uiuc_data_to_save = {
'uiuc_coordinates': uiuc_coordinates_list,
'uiuc_cl_values': uiuc_cl_values,
'uiuc_cd_values': uiuc_cd_values,
'uiuc_max_camber': uiuc_max_camber,
'uiuc_max_thickness': uiuc_max_thickness,
'uiuc_names': uiuc_names,
'uiuc_fitness_mean': uiuc_fitness_mean,
'uiuc_fitness_std': uiuc_fitness_std,
'uiuc_cl_mean': uiuc_cl_mean,
'uiuc_cl_std': uiuc_cl_std,
'uiuc_cd_mean': uiuc_cd_mean,
'uiuc_cd_std': uiuc_cd_std,
'uiuc_max_camber_mean': uiuc_max_camber_mean,
'uiuc_max_camber_std': uiuc_max_camber_std,
'uiuc_max_thickness_mean': uiuc_max_thickness_mean,
'uiuc_max_thickness_std': uiuc_max_thickness_std,
'uiuc_max_fitness': uiuc_max_fitness,
'uiuc_min_fitness': uiuc_min_fitness,
'uiuc_max_cl': uiuc_max_cl,
'uiuc_min_cl': uiuc_min_cl,
'uiuc_max_cd': uiuc_max_cd,
'uiuc_min_cd': uiuc_min_cd,
'uiuc_max_camber': uiuc_max_camber,
'uiuc_min_camber': uiuc_min_camber,
'uiuc_max_thickness': uiuc_max_thickness,
'uiuc_min_thickness': uiuc_min_thickness
}
with open(uiuc_pkl_path, 'wb') as f:
pickle.dump(uiuc_data_to_save, f)
vae_path = "vae_epoch_200.pt"
diffusion_path = "models/lucid_cl_standardized_run_1/best_model.pt"
if os.path.exists(pkl_save_path):
print("Loading saved data...")
with open(pkl_save_path, 'rb') as f:
loaded_data = pickle.load(f)
#cl_values = loaded_data['cl_values']
y_coords_list = loaded_data['y_coords_list']
gen_coefficients = loaded_data['gen_coefficients']
gen_max_camber = loaded_data['gen_max_camber']
gen_max_thickness = loaded_data['gen_max_thickness']
conditioning_error_list = loaded_data['conditioning_error_list']
conditioning_difference_list = loaded_data['conditioning_difference_list']
airfoil_x = loaded_data['airfoil_x']
else:
# Parameters
airfoil_dim = 200
n_samples = 6
unet_dim = 12
if torch.backends.mps.is_available():
device = torch.device('mps')
elif torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
# Load the trained diffusion model
diffusion_model = Unet1DConditional(unet_dim, cond_dim=1, channels=2, dim_mults=(1,2,4)).to(device)
diffusion_model.load_state_dict(torch.load(diffusion_path, weights_only=True))
diffusion_model.eval()
diffusion = GaussianDiffusion1D(diffusion_model, seq_length=int(airfoil_dim/2)).to(device)
# Initialize dataset
airfoil_path = 'coord_seligFmt'
dataset = AirfoilDataset(airfoil_path, num_points_per_side=100)
dataloader = DataLoader(dataset, batch_size=1, shuffle=True)
airfoil_x = dataset.get_x()
# Generate latent vectors with diffusion
# make conditioning tensor of shape (n_samples, 1)
# Define ranges for CL and CD
# get range of cd values from uiuc airfoils
min_cl = min(uiuc_cl_values)
print(f'min_cd: {min_cl}')
max_cl = max(uiuc_cl_values)
print(f'max_cd: {max_cl}')
cl_range = torch.linspace(min_cl, max_cl, 20).unsqueeze(1).to(device)
# Create a grid of CL and CD values
n_samples = cl_range.shape[0]
# Generate airfoils for each CL, CD pair
cl_values = []
samples_generated = 0
batch_size = 100 # Set the batch size
y_coords_list = []
airfoil_list = []
gen_coefficients = []
gen_max_camber = []
gen_max_thickness = []
conditioning_error_list = []
conditioning_difference_list = []
for conditioning_values in cl_range:
conditioning_values = conditioning_values.repeat(batch_size, 1)
generated_y = diffusion.sample(batch_size=batch_size, conditioning=conditioning_values)
for i in range(batch_size):
# get y_coords into one channel
y_coords = torch.cat([generated_y[i, 0, :], generated_y[i, 1, :]])
# Store the conditioning values for each sample
cl_values.append(conditioning_values[0].detach().cpu())
# store y_coords for plotting andCreate an airfoil object
y_coords = y_coords.detach().cpu().numpy()
y_coords_list.append(y_coords)
coordinates = np.vstack([airfoil_x, y_coords]).T
airfoil = asb.Airfoil(
name = f'Generated Airfoil {i+1}',
coordinates = coordinates
)
coefficients = airfoil.get_aero_from_neuralfoil(alpha=0, Re=1e6, mach=0.0)
cl = coefficients['CL'][0]
conditioning_difference = cl - conditioning_values[0]
conditioning_difference_list.append(conditioning_difference)
conditioning_error = torch.abs(cl - conditioning_values[0])/torch.abs(conditioning_values[0])
conditioning_error_list.append(conditioning_error)
gen_coefficients.append(coefficients)
max_camber = airfoil.max_camber()
gen_max_camber.append(max_camber)
max_thickness = airfoil.max_thickness()
gen_max_thickness.append(max_thickness)
samples_generated += batch_size
print(f"Generated airfoil batch: {samples_generated}/{n_samples * batch_size}")
data_to_save = {
'cl_values': cl_values,
'y_coords_list': y_coords_list,
'gen_coefficients': gen_coefficients,
'gen_max_camber': gen_max_camber,
'gen_max_thickness': gen_max_thickness,
'conditioning_error_list': conditioning_error_list,
'conditioning_difference_list': conditioning_difference_list,
'airfoil_x': airfoil_x
}
with open(pkl_save_path, 'wb') as f:
pickle.dump(data_to_save, f)
print(f'Generated data saved to {pkl_save_path}')
# Perform PCA on the generated airfoils
airfoil_matrix = np.array(y_coords_list)
print(f'airfoil_matrix shape: {airfoil_matrix.shape}')
pca = PCA(n_components=2, whiten=True, random_state=42, svd_solver='full', power_iteration_normalizer='LU')
pca_result = pca.fit_transform(airfoil_matrix)
# Create subplots for PCA results
fig, axs = plt.subplots(1, 1, figsize=(8, 6))
# Perform PCA on the UIUC airfoils
uiuc_airfoil_matrix = np.array([coords.flatten() for coords in uiuc_coordinates_list])
print(f'uiuc_airfoil_matrix shape: {uiuc_airfoil_matrix.shape}')
pca_2 = PCA(n_components=2, whiten=True, random_state=42, svd_solver='full', power_iteration_normalizer='LU')
uiuc_pca_result = pca_2.fit_transform(uiuc_airfoil_matrix)
# Plot the PCA results for both generated and UIUC airfoils
sc2 = axs.scatter(pca_result[:, 0], pca_result[:, 1], c='blue', marker='o', label='Generated Airfoils', alpha=0.5)
axs.scatter(uiuc_pca_result[:, 0], uiuc_pca_result[:, 1], c='red', marker='o', label='UIUC Airfoils', alpha=0.5)
axs.set_xlabel('Principal Component 1')
axs.set_ylabel('Principal Component 2')
axs.set_title('PCA Comparison of Generated and UIUC Airfoils')
axs.legend()
plt.show()