-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlucid_cl_thickness_conditional_1d.py
215 lines (177 loc) · 8.49 KB
/
lucid_cl_thickness_conditional_1d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import os
import copy
import numpy as np
import torch
import torch.nn as nn
from tqdm import tqdm
from torch import optim
from torch.utils.tensorboard import SummaryWriter
from utils_1d_2channel import *
import logging
from airfoil_dataset_1d_2channel import AirfoilDataset
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import ReduceLROnPlateau
import wandb
import math
import matplotlib.pyplot as plt
import aerosandbox as asb
from LucidDiffusion import *
import pickle
logging.basicConfig(format="%(asctime)s - %(levelname)s: %(message)s", level=logging.INFO, datefmt="%I:%M:%S")
# load uiuc airfoil data
uiuc_path = 'uiuc_airfoils.pkl'
with open(uiuc_path, 'rb') as f:
uiuc_data = pickle.load(f)
uiuc_cl_mean = uiuc_data['uiuc_cl_mean']
uiuc_cl_std = uiuc_data['uiuc_cl_std']
uiuc_cd_mean = uiuc_data['uiuc_cd_mean']
uiuc_cd_std = uiuc_data['uiuc_cd_std']
uiuc_max_cl = uiuc_data['uiuc_max_cl']
uiuc_max_cd = uiuc_data['uiuc_max_cd']
uiuc_min_cl = uiuc_data['uiuc_min_cl']
uiuc_min_cd = uiuc_data['uiuc_min_cd']
uiuc_max_thickness_mean = uiuc_data['uiuc_max_thickness_mean']
uiuc_max_thickness_std = uiuc_data['uiuc_max_thickness_std']
def save_images_conditional(airfoils,airfoil_x, path, conditioning, num_cols=4):
# input tensor cl is cl = torch.linspace(-0.2, 1.5, 5).unsqueeze(1).to(device) convert to numpy
cl = conditioning[:,0].cpu().numpy()
max_thickness = conditioning[:,1].cpu().numpy()
num_airfoils = airfoils.shape[0]
num_rows = (num_airfoils + num_cols - 1) // num_cols # Ensure we cover all airfoils
fig, axs = plt.subplots(num_rows, num_cols, figsize=(num_cols * 5, num_rows * 5))
axs = axs.flatten()
for i in range(num_airfoils):
ax = axs[i]
airfoil = airfoils[i].cpu()
y_coords = torch.cat([airfoil[0], airfoil[1]])
ax.scatter(airfoil_x, y_coords, color='black')
cl_string = f'cl={cl[i]:.2f}'
max_thickness_string = f'max thickness={max_thickness[i]:.2f}'
ax.set_title(f'Airfoil {i+1}, {cl_string}, {max_thickness_string}')
ax.set_aspect('equal')
ax.axis('off')
# Hide any remaining empty subplots
for j in range(num_airfoils, len(axs)):
fig.delaxes(axs[j])
plt.tight_layout()
fig.savefig(path)
plt.close(fig)
def train(args):
setup_logging(args.run_name)
device = args.device
dataset = AirfoilDataset(args.dataset_path, num_points_per_side=args.num_airfoil_points)
dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True)
model = Unet1DConditional(12, cond_dim=2, dim_mults=(1, 2, 4), channels=2, dropout=0.).to(device)
optimizer = optim.AdamW(model.parameters(), lr=args.lr)
scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=0.75, patience=10, verbose=True)
l1 = nn.L1Loss()
diffusion = GaussianDiffusion1D(model, seq_length=args.num_airfoil_points, objective='pred_noise', timesteps=1000).to(device)
logger = SummaryWriter(os.path.join("runs", args.run_name))
l = len(dataloader)
# Wandb setup
wandb.init(project='conditional_latent_airfoil_diffusion', name=args.run_name, config=args)
config = wandb.config
config.epochs = args.epochs
config.batch_size = args.batch_size
config.lr = args.lr
airfoil_x = dataset.get_x()
training_loss = []
best_loss = float('inf')
patience = 200
epochs_no_improve = 0
for epoch in range(args.epochs):
logging.info(f"Starting epoch {epoch}:")
pbar = tqdm(dataloader)
epoch_loss = 0
for i, airfoil in enumerate(pbar):
train_coords = airfoil['train_coords_y'].to(device).float()
cl = airfoil['CL'].to(device).float().unsqueeze(1)
max_thickness = airfoil['max_thickness'].to(device).float().unsqueeze(1)
# normalize cl and cd
#cl = (cl - uiuc_min_cl) / (uiuc_max_cl - uiuc_min_cl)
#cd = (cd - uiuc_min_cd) / (uiuc_max_cd - uiuc_min_cd)
# standardize cl and cd
cl = (cl - uiuc_cl_mean) / uiuc_cl_std
#cd = (cd - uiuc_cd_mean) / uiuc_cd_std
max_thickness = (max_thickness - uiuc_max_thickness_mean) / uiuc_max_thickness_std
# shift mean away from 0
cl = cl + 2
max_thickness = max_thickness + 2
conditioning = torch.cat([cl, max_thickness], dim=1)
# Pass train coords through VAE
t = torch.randint(0, diffusion.num_timesteps, (train_coords.shape[0],), device=device).long()
noise = torch.randn_like(train_coords, device=device)
x_t = diffusion.q_sample(train_coords, t, noise=noise)
if torch.rand(1).item() < .2:
cl = None
max_thickness = None
predicted_noise = diffusion.model(x_t, t, conditioning=conditioning)
cl_error = l1(noise, predicted_noise)
# Optionally calculate CL error if CL is provided
'''
if cl is not None:
gen_cl = get_cl_values(x_t, t, model, diffusion, vae, cl, airfoil_x).to(device)
cl_error += l1(cl.squeeze(1), gen_cl)
'''
optimizer.zero_grad()
cl_error.backward()
optimizer.step()
epoch_loss += cl_error.item()
current_lr = optimizer.param_groups[0]['lr']
pbar.set_postfix(epoch_loss=cl_error.item(), learning_rate=current_lr)
wandb.log({
"Batch Loss": cl_error.item(),
"Learning Rate": current_lr,
"Epoch": epoch
})
logger.add_scalar(f"loss: {epoch}", cl_error.item(), global_step=epoch * l + i)
logger.add_scalar("learning_rate", current_lr, global_step=epoch * l + i)
epoch_loss /= len(dataloader)
training_loss.append(epoch_loss)
scheduler.step(epoch_loss)
if epoch_loss < best_loss:
best_loss = epoch_loss
epochs_no_improve = 0
torch.save(model.state_dict(), os.path.join("models", args.run_name, "best_model.pt"))
else:
epochs_no_improve += 1
if epochs_no_improve >= patience:
logging.info(f"Early stopping after {epoch} epochs.")
break
current_lr = optimizer.param_groups[0]['lr']
logger.add_scalar("learning_rate", current_lr, global_step=epoch)
logging.info(f"Epoch {epoch} completed. Learning rate: {current_lr}, epochs no improvement: {epochs_no_improve}, best loss: {best_loss}")
if epoch % 100 == 0:
cl = torch.linspace(0, 2, 5).unsqueeze(1).to(device)
max_thickness = torch.linspace(1, 5, 5).unsqueeze(1).to(device)
combined = torch.cat([cl, max_thickness], dim=1)
sampled_images = diffusion.sample(batch_size=5, conditioning=combined)
save_images_conditional(sampled_images, airfoil_x, os.path.join("results", args.run_name, f"{epoch}.jpg"), combined)
torch.save(model.state_dict(), os.path.join("models", args.run_name, f"ckpt.pt"))
torch.save(optimizer.state_dict(), os.path.join("models", args.run_name, f"optim.pt"))
wandb.log({"Generated Images": [wandb.Image(os.path.join("results", args.run_name, f"{epoch}.jpg"))],
"learning_rate": current_lr})
# Save the loss plot
plt.plot(training_loss)
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.title('Training Loss')
loss_curve_path = os.path.join("results", args.run_name, "training_loss.jpg")
plt.savefig(loss_curve_path)
# Log the loss curve image to WandB
wandb.log({"Training Loss Curve": wandb.Image(loss_curve_path)})
wandb.save(loss_curve_path)
def launch():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--run_name', type=str, default="lucid_cl_thickness_standardized_run_1")
parser.add_argument('--epochs', type=int, default=5001)
parser.add_argument('--batch_size', type=int, default=64)
parser.add_argument('--num_airfoil_points', type=int, default=100)
parser.add_argument('--dataset_path', type=str, default="coord_seligFmt/")
parser.add_argument('--device', type=str, default="cuda")
parser.add_argument('--lr', type=float, default=1e-3)
args = parser.parse_args()
train(args)
if __name__ == '__main__':
launch()