forked from SuyashLakhotia/TextCategorization
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathbaseline.py
101 lines (78 loc) · 3.73 KB
/
baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
import argparse
import time
import os
import pickle
import numpy as np
from sklearn.svm import LinearSVC
from sklearn.naive_bayes import MultinomialNB
import data
import utils
# Parse Arguments
# ==================================================
parser = argparse.ArgumentParser()
parser.add_argument("-d", "--dataset", type=str, default="20 Newsgroups", choices=data.AVAILABLE_DATASETS,
help="Dataset name (default: 20 Newsgroups)")
parser.add_argument("--vocab_size", type=int, default=None,
help="Vocabulary size (default: None [see data.py])")
parser.add_argument("--out", type=str, default="tfidf", choices=["tfidf", "count"],
help="Type of document vectors (default: tfidf)")
parser.add_argument("--model", type=str, default="all", choices=["all", "linear_svc", "multinomial_nb"],
help="Model(s) to run on dataset.")
parser.add_argument("--LSVC-C", type=float, default=1.0, dest="C",
help="LinearSVC: Penalty parameter C of the error term.")
parser.add_argument("--MNB-alpha", type=float, default=0.01, dest="alpha",
help="MultinomialNB: Additive smoothing parameter (0 for no smoothing).")
parser.add_argument("--no-save", action="store_false", dest="save",
help="Include this flag if models should not be pickled.")
parser.set_defaults(save=True)
args = parser.parse_args()
# Data Preparation
# ==================================================
train, test = data.load_dataset(args.dataset, out=args.out, vocab_size=args.vocab_size)
x_train = train.data.astype(np.float32)
x_test = test.data.astype(np.float32)
y_train = train.labels
y_test = test.labels
# Print information about the dataset
utils.print_data_info(train, x_train, x_test, y_train, y_test)
# To print for results.csv
data_str = "{{format: '{}', vocab_size: {}}}".format(args.out, len(train.vocab))
# Training
# ==================================================
timestamp = str(int(time.time()))
# Linear Support Vector Classifier
if args.model == "all" or args.model == "linear_svc":
svm_clf = LinearSVC(C=args.C)
start = time.time()
svm_clf.fit(x_train, y_train)
train_time = time.time() - start
predicted = svm_clf.predict(x_test)
svm_acc = np.mean(predicted == y_test)
utils.print_result(args.dataset, "linear_svc", svm_acc, data_str, timestamp,
hyperparams="{{C: {}}}".format(args.C))
print("Time Taken: {:g}".format(train_time))
# Multinomial Naive Bayes Classifier
if args.model == "all" or args.model == "multinomial_nb":
bayes_clf = MultinomialNB(alpha=args.alpha)
start = time.time()
bayes_clf.fit(x_train, y_train)
train_time = time.time() - start
predicted = bayes_clf.predict(x_test)
bayes_acc = np.mean(predicted == y_test)
utils.print_result(args.dataset, "multinomial_nb", bayes_acc, data_str, timestamp,
hyperparams="{{alpha: {}}}".format(args.alpha))
print("Time Taken: {:g}".format(train_time))
# Save models as pickles
if args.save:
if args.model == "all" or args.model == "linear_svc":
out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", args.dataset, "linear_svc",
timestamp))
if not os.path.exists(out_dir):
os.makedirs(out_dir)
pickle.dump(svm_clf, open(out_dir + "/pickle.pkl", "wb"))
if args.model == "all" or args.model == "multinomial_nb":
out_dir = os.path.abspath(os.path.join(os.path.curdir, "runs", args.dataset, "multinomial_nb",
timestamp))
if not os.path.exists(out_dir):
os.makedirs(out_dir)
pickle.dump(bayes_clf, open(out_dir + "/pickle.pkl", "wb"))