This is a repository of where we are trying to have all the knowledge base collected.
- https://www.youtube.com/playlist?list=PLqYmG7hTraZBKeNJ-JE_eyJHZ7XgBoAyb
- https://brendenlake.github.io/CCM-site/
- HPML, fall 2019 (Drive), Dr. Ulrich Finkler.
- https://atcold.github.io/pytorch-Deep-Learning/
- https://www.youtube.com/playlist?list=PLLHTzKZzVU9eaEyErdV26ikyolxOsz6mq
- https://d2l.ai/. (DL)
- https://course.fast.ai/videos/?lesson=1 (FAST AI)
- ML: (https://github.com/gowriaddepalli/100-Days-Of-ML-Code)
: https://github.com/Shivanshu-Gupta/foundations-of-machine-learning-david-rosenberg/blob/master/notes.pdf
: https://bloomberg.github.io/foml/#lectures - DL (https://github.com/gowriaddepalli/DeepLearning.ai-Summary)
- https://github.com/gowriaddepalli/CV_DL_Research
- NLP - cs224n - (https://github.com/gowriaddepalli/cs224n-winter-2017)
- CV - cs231n - (https://github.com/gowriaddepalli/CS231n-2017-Summary)
- Math - : https://vaibhavgupta.io/notes/
: https://nickgreenquist.github.io/blog/
- https://github.com/gowriaddepalli/applied-ml
- https://madewithml.com/courses/applied-ml-in-production/solution/ (MLops)
- https://www.educative.io/courses/natural-language-processing-ml/7nz7ynvqVA8
- https://www.educative.io/courses/image-recognition-ml
- https://www.educative.io/courses/deep-learning-for-industry
- https://github.com/karanchahal/papers
- https://github.com/sksq96/dl-papernotes
- https://arxiv.org/pdf/1704.02532.pdf
- https://www.kdnuggets.com/2017/04/top-20-papers-machine-learning.html
- https://medium.com/@rupak.thakur/23-deep-learning-papers-to-get-you-started-part-1-308f80d7bba2
- https://github.com/floodsung/Deep-Learning-Papers-Reading-Roadmap
- https://distill.pub/
- https://github.com/sksq96/examples
- https://github.com/sksq96/deep-learning
- https://github.com/sksq96/ML-From-Scratch
- https://github.com/Niranjankumar-c/DeepLearning-PadhAI/tree/master/DeepLearning_Materials
- https://github.com/eriklindernoren/ML-From-Scratch
- https://towardsdatascience.com/@niranjankumarc
- https://distill.pub/2019/visual-exploration-gaussian-processes/
- https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b
- http://karpathy.github.io/neuralnets/
- https://im.perhapsbay.es/
- https://im.perhapsbay.es/db
- https://machinelearnings.co/a-humans-guide-to-machine-learning-e179f43b67a0#a817
- https://p555s.github.io/
- https://spraphul.github.io/blog/MyCollections
- https://classroom.udacity.com/courses/ud188
- https://www.deeplearning.ai/deep-learning-specialization/
- https://www.fast.ai/
- https://www.youtube.com/watch?v=D3fnGG7cdjY
- https://www.youtube.com/watch?v=vTY58-51XZA
- https://www.youtube.com/playlist?list=PLZbbT5o_s2xq7LwI2y8_QtvuXZedL6tQU
- https://medium.com/subhrajit-roy/cracking-the-machine-learning-interview-1d8c5bb752d8
- https://www.analyticsvidhya.com/blog/2016/09/40-interview-questions-asked-at-startups-in-machine-learning-data-science/
- https://github.com/gowriaddepalli/Interview_preparation
- https://becominghuman.ai/cheat-sheets-for-ai-neural-networks-machine-learning-deep-learning-big-data-678c51b4b463
- https://ml-cheatsheet.readthedocs.io/en/latest/optimizers.html
- https://medium.com/machine-learning-in-practice/cheat-sheet-of-machine-learning-and-python-and-math-cheat-sheets-a4afe4e791b6
- https://ml-cheatsheet.readthedocs.io/en/latest/index.html
- https://stanford.edu/~shervine/teaching/cs-229/cheatsheet-machine-learning-tips-and-tricks
- https://github.com/gowriaddepalli/stanford-cs-229-machine-learning
- https://github.com/gowriaddepalli/stanford-cs-230-deep-learning
- https://github.com/gowriaddepalli/stanford-cs-221-artificial-intelligence
- https://github.com/gowriaddepalli/Cheatsheets
- https://developers.google.com/machine-learning/guides/rules-of-ml
- http://franciscouture.com/wordpress/
- https://towardsdatascience.com/quest-to-understand-machine-learning-in-production-notes-part-i-c9364eb4616
- https://towardsdatascience.com/quest-to-understand-machine-learning-in-production-notes-part-ii-a72bdde60f4c
- https://www.educative.io/courses/data-science-in-production-building-scalable-model-pipeline
- https://madewithml.com/courses/applied-ml-in-production/
- https://medium.com/dair-ai/my-recommendations-to-learn-machine-learning-in-production-d3c5b8e42635
- https://mlinproduction.com/
- https://ruder.io/deep-learning-nlp-best-practices/index.html
- https://jalammar.github.io/ = https://learningturtle.github.io/Blog/ (attention)
- https://towardsdatascience.com/transformers-explained-visually-part-1-overview-of-functionality-95a6dd460452 (Transformers)
- https://www.youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw
- https://vaibhavgupta.io/notes/
- https://www.linkedin.com/learning/essential-math-for-machine-learning-python-edition
- https://paperswithcode.com/
- https://modelzoo.co/
- https://pub.towardsai.net/state-of-the-art-models-in-every-machine-learning-field-2021-c7cf074da8b2
- https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)
- https://abacus.ai/blog/2020/11/30/evaluating-deep-learning-models-classification/
- https://www.youtube.com/watch?v=OEiNnfdxBRE&list=PLSrTvUm384I9PV10koj_cqit9OfbJXEkq
- https://github.com/gowriaddepalli/mlsystems2022
- https://github.com/gowriaddepalli/ML_Systems
- https://theaisummer.com/best-practices-deep-learning-code/
- https://theaisummer.com/deep-learning-production/