Skip to content

Commit e8cb186

Browse files
committed
xP: some documentation
1 parent 14a4801 commit e8cb186

File tree

7 files changed

+41
-11
lines changed

7 files changed

+41
-11
lines changed

src/turbulence/dissipationeq.F90

Lines changed: 5 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -17,11 +17,15 @@ subroutine dissipationeq(nlev,dt,u_taus,u_taub,z0s,z0b,h,NN,SS)
1717
! =
1818
! {\cal D}_\epsilon
1919
! + \frac{\epsilon}{k} ( c_{\epsilon 1} P + c_{\epsilon 3} G
20+
! + c_{\epsilon x} P_x
21+
! + c_{\epsilon 4} P_s
2022
! - c_{\epsilon 2} \epsilon )
2123
! \comma
2224
! \end{equation}
2325
! where $\dot{\epsilon}$ denotes the material derivative of $\epsilon$.
24-
! The production terms $P$ and $G$ follow from \eq{PandG} and
26+
! The production terms $P$ and $G$ follow from \eq{PandG}.
27+
! $P_s$ is Stokes shear production defined in \eq{computePs}
28+
! and $P_x$ accounts for extra turbulence production.
2529
! ${\cal D}_\epsilon$ represents the sum of the viscous and turbulent
2630
! transport terms.
2731
!

src/turbulence/genericeq.F90

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -43,12 +43,16 @@ subroutine genericeq(nlev,dt,u_taus,u_taub,z0s,z0b,h,NN,SS)
4343
! \label{generic}
4444
! \dot{\psi} = {\cal D}_\psi
4545
! + \frac{\psi}{k} ( c_{\psi_1} P + c_{\psi_3} G
46+
! + c_{\psi x} P_x
47+
! + c_{\psi 4} P_s
4648
! - c_{\psi 2} \epsilon )
4749
! \comma
4850
! \end{equation}
4951
! where $\dot{\psi}$ denotes the material derivative of $\psi$,
5052
! see \cite{UmlaufBurchard2003}.
5153
! The production terms $P$ and $G$ follow from \eq{PandG}.
54+
! $P_s$ is Stokes shear production defined in \eq{computePs}
55+
! and $P_x$ accounts for extra turbulence production.
5256
! ${\cal D}_\psi$ represents the sum of the viscous and turbulent
5357
! transport terms. The rate of dissipation can computed by solving
5458
! \eq{psi_l} for $l$ and inserting the result into \eq{epsilon}.

src/turbulence/lengthscaleeq.F90

Lines changed: 5 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -14,11 +14,14 @@ subroutine lengthscaleeq(nlev,dt,depth,u_taus,u_taub,z0s,z0b,h,NN,SS)
1414
! \begin{equation}
1515
! \label{MY}
1616
! \dot{\overline{q^2 l}}
17-
! = {\cal D}_l + l ( E_1 P + E_3 G - E_2 F \epsilon )
17+
! = {\cal D}_l + l ( E_1 P + E_3 G + E_x P_x + E_6 P_s - E_2 F \epsilon )
1818
! \comma
1919
! \end{equation}
2020
! where $\dot{\overline{q^2 l}}$ denotes the material derivative of $q^2 l$.
21-
! The production terms $P$ and $G$ follow from \eq{PandG}, and $\epsilon$
21+
! The production terms $P$ and $G$ follow from \eq{PandG}.
22+
! $P_s$ is Stokes shear production defined in \eq{computePs}
23+
! and $P_x$ accounts for extra turbulence production.
24+
! $\epsilon$
2225
! can be computed either directly from \eq{epsilonMY}, or from \eq{epsilon}
2326
! with the help \eq{B1}.
2427
!

src/turbulence/omegaeq.F90

Lines changed: 5 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -17,11 +17,15 @@ subroutine omegaeq(nlev,dt,u_taus,u_taub,z0s,z0b,h,NN,SS)
1717
! =
1818
! {\cal D}_\omega
1919
! + \frac{\omega}{k} ( c_{\omega 1} P + c_{\omega 3} G
20+
! + c_{\omega x} P_x
21+
! + c_{\omega 4} P_s
2022
! - c_{\omega 2} \varepsilon )
2123
! \comma
2224
! \end{equation}
2325
! where $\dot{\omega}$ denotes the material derivative of $\omega$.
24-
! The production terms $P$ and $G$ follow from \eq{PandG} and
26+
! The production terms $P$ and $G$ follow from \eq{PandG}.
27+
! $P_s$ is Stokes shear production defined in \eq{computePs}
28+
! and $P_x$ accounts for extra turbulence production.
2529
! ${\cal D}_\omega$ represents the sum of the viscous and turbulent
2630
! transport terms.
2731
!

src/turbulence/production.F90

Lines changed: 16 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -9,20 +9,32 @@ subroutine production(nlev,NN,SS,xP, SSCSTK, SSSTK)
99
!
1010
! !DESCRIPTION:
1111
! This subroutine calculates the production terms of turbulent kinetic
12-
! energy as defined in \eq{PandG} and the production of buoayancy
12+
! energy as defined in \eq{PandG} and the production of buoyancy
1313
! variance as defined in \eq{Pbvertical}.
14-
! The shear-production is computed according to
14+
! The Eulerian shear-production is computed according to
1515
! \begin{equation}
1616
! \label{computeP}
17-
! P = \nu_t (M^2 + \alpha_w N^2) + X_P
17+
! P = \nu_t (M^2 + \alpha_w N^2) + \nu^S_t S_c^2
1818
! \comma
1919
! \end{equation}
2020
! with the turbulent diffusivity of momentum, $\nu_t$, defined in
2121
! \eq{nu}. The shear-frequency, $M$, is discretised as described
2222
! in \sect{sec:shear}.
2323
! The term multiplied by $\alpha_w$ traces back to
2424
! a parameterisation of breaking internal waves suggested by
25-
! \cite{Mellor89}. $X_P$ is an extra production term, connected for
25+
! \cite{Mellor89}.
26+
! The turbulent momentum fluxes due to Stokes velocities induce the
27+
! Stokes-Eulerian cross-shear term
28+
! $S_c^2 = \frac{\partial u}{\partial z}\frac{\partial u_s}{\partial z} + \frac{\partial v}{\partial z}\frac{\partial v_s}{\partial z}$
29+
! with corresponding diffusivity $\nu^S_t$, and the additional
30+
! Stokes shear-production
31+
! \begin{equation}
32+
! \label{computePs}
33+
! P_s = \nu_t S_c^2 + \nu^S_t S_s^2
34+
! \end{equation}
35+
! with squared Stokes shear
36+
! $S_s^2 = \frac{\partial u_s}{\partial z}^2 + \frac{\partial v_s}{\partial z}^2$.
37+
! $X_P$ is an extra production term, connected for
2638
! example with turbulence production caused by sea-grass, see
2739
! \eq{sgProduction} in \sect{sec:seagrass}. {\tt xP} is an {\tt optional}
2840
! argument in the FORTRAN code.

src/turbulence/q2over2eq.F90

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@ subroutine q2over2eq(nlev,dt,u_taus,u_taub,z0s,z0b,h,NN,SS)
1313
! \label{tkeB}
1414
! \dot{\overline{q^2/2}}
1515
! =
16-
! {\cal D}_q + P + G - \epsilon
16+
! {\cal D}_q + P + G + P_x + P_s - \epsilon
1717
! \comma
1818
! \end{equation}
1919
! where $\dot{\overline{q^2/2}}$ denotes the material derivative of $q^2/2$.

src/turbulence/tkeeq.F90

Lines changed: 5 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -16,12 +16,15 @@ subroutine tkeeq(nlev,dt,u_taus,u_taub,z0s,z0b,h,NN,SS)
1616
! \label{tkeA}
1717
! \dot{k}
1818
! =
19-
! {\cal D}_k + P + G - \epsilon
19+
! {\cal D}_k + P + G + P_x + P_s - \epsilon
2020
! \comma
2121
! \end{equation}
2222
! where $\dot{k}$ denotes the material derivative of $k$. $P$ and $G$ are
2323
! the production of $k$ by mean shear and buoyancy, respectively, and
24-
! $\epsilon$ the rate of dissipation. ${\cal D}_k$ represents the sum of
24+
! $\epsilon$ the rate of dissipation.
25+
! $P_s$ is Stokes shear production defined in \eq{computePs}
26+
! and $P_x$ accounts for extra turbulence production.
27+
! ${\cal D}_k$ represents the sum of
2528
! the viscous and turbulent transport terms.
2629
! For horizontally homogeneous flows, the transport term ${\cal D}_k$
2730
! appearing in \eq{tkeA} is presently expressed by a simple

0 commit comments

Comments
 (0)