-
Notifications
You must be signed in to change notification settings - Fork 84
/
auto_review.py
executable file
·216 lines (155 loc) · 6.29 KB
/
auto_review.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright 2016, 2017, 2018 Guenter Bartsch
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
#
# use kaldi to decode so far not reviewed submissions, auto-accept those
# that decode to their prompt correctly
#
import os
import sys
import logging
import readline
import atexit
import traceback
from time import time
from optparse import OptionParser
from StringIO import StringIO
from nltools import misc
from nltools.phonetics import ipa2xsampa
from nltools.tokenizer import tokenize
from speech_lexicon import Lexicon
from speech_transcripts import Transcripts
from kaldiasr.nnet3 import KaldiNNet3OnlineModel, KaldiNNet3OnlineDecoder
DEFAULT_ASR_MODEL = 'kaldi-chain-voxforge-de-latest'
MODELDIR = 'data/models/%s'
SAVE_RATE = 10
FAILLOG = 'tmp/decoding_fails.txt'
#
# init
#
misc.init_app ('auto_review')
config = misc.load_config ('.speechrc')
#
# command line
#
parser = OptionParser("usage: %prog [options] corpus")
parser.add_option ("-a", "--all", action="store_true", dest="do_all",
help="do not use ASR but auto-rate all matching submissions")
parser.add_option ("-f", "--filter", dest="ts_filter", type = "str",
help="filter (default: no filtering)")
parser.add_option ("-l", "--lang", dest="lang", type = "str", default="de",
help="tokenizer language (default: de)")
parser.add_option ("-m", "--asr-model", dest="asr_model", type = "str", default=DEFAULT_ASR_MODEL,
help="kaldi asr model to use (default: %s)" % DEFAULT_ASR_MODEL)
parser.add_option ("-R", "--result-file", dest="outfn", type = "str", default='review-result.csv',
help="result file (default: review-result.csv)")
parser.add_option ("-r", "--rating", dest="rating", type="int", default=2,
help="rating to apply (1=Poor 2=Fair 3=Good), default: 2 (fair)")
#
# offset and step are meant for multi-processor operation:
# start one review process per CPU, offsetting them properly, e.g. on a 4 CPU system:
#
# auto_review -s 4 -o 0 &
# auto_review -s 4 -o 1 &
# auto_review -s 4 -o 2 &
# auto_review -s 4 -o 3 &
#
parser.add_option ("-s", "--step", dest="step", type="int", default=1,
help="transcript step (default: 1")
parser.add_option ("-o", "--offset", dest="offset", type="int", default=0,
help="transcript offset to start from (default: 0")
parser.add_option ("-v", "--verbose", action="store_true", dest="verbose",
help="enable debug output")
(options, args) = parser.parse_args()
ts_filter = options.ts_filter.decode('utf8') if options.ts_filter else None
if len(args)!=1:
parser.print_usage()
sys.exit(1)
corpus = args[0]
if options.verbose:
logging.basicConfig(level=logging.DEBUG)
else:
logging.basicConfig(level=logging.INFO)
wav16_dir = config.get("speech", "wav16")
#
# load transcripts
#
logging.info("loading transcripts...")
transcripts = Transcripts(corpus_name=corpus)
logging.info("loading transcripts...done.")
#
# load kaldi model
#
if not options.do_all:
logging.info("loading kaldi model...")
kaldi_model = KaldiNNet3OnlineModel (MODELDIR % options.asr_model, acoustic_scale=1.0, beam=7.0, frame_subsampling_factor=3)
logging.info("loading kaldi model...done.")
#
# main
#
num_rated = 0
idx = 0
next_idx = options.offset
num_failed = 0
if not options.do_all:
decoder = KaldiNNet3OnlineDecoder (kaldi_model)
with open (options.outfn, 'w') as outf:
for utt_id in transcripts:
ts = transcripts[utt_id]
if ts['quality'] != 0:
continue
if ts_filter and not (ts_filter in utt_id):
continue
idx += 1
if idx != next_idx + 1:
continue
next_idx += options.step
wavfn = '%s/%s/%s.wav' % (wav16_dir, corpus, utt_id)
prompt = ' '.join(tokenize(ts['prompt'], lang=options.lang))
if not prompt:
logging.info("%7d, # rated: %5d %-20s no prompt." % (idx, num_rated, utt_id))
continue
if options.do_all:
logging.info("%7d, # rated: %5d %-20s manual rating: %d" % (idx, num_rated, utt_id, options.rating))
outf.write ('%s;%d\n' % (utt_id, options.rating))
num_rated += 1
else:
try:
if decoder.decode_wav_file(wavfn):
s, l = decoder.get_decoded_string()
hyp = ' '.join(tokenize(s, lang=options.lang))
if hyp == prompt:
logging.info("%7d, # rated: %5d %-20s *** MATCH ***" % (idx, num_rated, utt_id))
outf.write ('%s;%d\n' % (utt_id, options.rating))
outf.flush()
logging.debug (' %s written.' % options.outfn)
num_rated += 1
else:
logging.info("%7d, # rated: %5d %-20s no match" % (idx, num_rated, utt_id))
logging.debug(" hyp : %s" % repr(hyp))
logging.debug(" prompt: %s" % repr(prompt))
else:
logging.info("%7d, # rated: %5d %-20s decoder failed" % (idx, num_rated, utt_id))
except:
logging.error('EXCEPTION CAUGHT WHILE DECODING %s\n %s' % (wavfn, traceback.format_exc()))
with open(FAILLOG, 'a') as faillog:
faillog.write('%s\n' % wavfn)
num_failed += 1
logging.info ("%s written." % options.outfn)
if num_failed:
logging.warn ("logged %d files where decoding failed to: %s" % (num_failed, FAILLOG))