|
10 | 10 | # or implied. See the License for the specific language governing permissions and limitations under
|
11 | 11 | # the License.
|
12 | 12 |
|
13 |
| -"""Implements Cloud ML Eval Results Analysis""" |
| 13 | +"""Implements Cloud ML Analysis Helpers""" |
14 | 14 |
|
15 |
| -import apache_beam as beam |
16 |
| -from collections import namedtuple |
17 | 15 |
|
18 |
| -"""Prepresents an eval results CSV file. For example, the content is like: |
19 |
| - 107,Iris-versicolor,1.64827824278e-07,0.999999880791,6.27104979056e-10 |
20 |
| - 100,Iris-versicolor,3.5338824091e-05,0.99996471405,1.32811195375e-09 |
21 |
| - ... |
22 |
| -""" |
23 |
| -CsvEvalResults = namedtuple('CsvEvalResults', 'source, key_index predicted_index score_index_start num_scores') |
| 16 | +import google.cloud.ml as ml |
| 17 | +import numpy as np |
| 18 | +import pandas as pd |
| 19 | +import yaml |
24 | 20 |
|
25 |
| -"""Prepresents an eval source CSV file. For example, the content is like: |
26 |
| - 107,Iris-virginica,4.9,2.5,4.5,1.7 |
27 |
| - 100,Iris-versicolor,5.7,2.8,4.1,1.3 |
28 |
| - ... |
29 |
| - The metadata is generated in the preprocessing pipeline. It is used to describe the CSV file, |
30 |
| - including schema, headers, etc. |
31 |
| -""" |
32 |
| -CsvEvalSource = namedtuple('CsvEvalSource', 'source metadata') |
| 21 | +import datalab.bigquery as bq |
33 | 22 |
|
34 | 23 |
|
35 |
| -class EvalResultsCsvCoder(beam.coders.Coder): |
36 |
| - """A coder to read from Eval results CSV file. Note encode() is only needed in cloud run. |
37 |
| - """ |
38 |
| - def __init__(self, eval_results): |
39 |
| - self._eval_results = eval_results |
40 |
| - |
41 |
| - def decode(self, csv_line): |
42 |
| - import csv |
43 |
| - source_elem = next(csv.reader([csv_line])) |
44 |
| - key = source_elem[self._eval_results.key_index] |
45 |
| - element = { |
46 |
| - 'predicted': source_elem[self._eval_results.predicted_index], |
47 |
| - 'scores': source_elem[self._eval_results.score_index_start: \ |
48 |
| - self._eval_results.score_index_start+self._eval_results.num_scores] |
49 |
| - } |
50 |
| - return (key, element) |
51 |
| - |
52 |
| - def encode(self, element): |
53 |
| - return str(element) |
54 |
| - |
55 |
| - |
56 |
| -class AccuracyFn(beam.CombineFn): |
57 |
| - """A transform to compute accuracy for feature slices. |
58 |
| - """ |
59 |
| - def __init__(self, target_column_name): |
60 |
| - self._target_column_name = target_column_name |
61 |
| - |
62 |
| - def create_accumulator(self): |
63 |
| - return (0.0, 0) |
64 |
| - |
65 |
| - def add_input(self, (sum, count), input): |
66 |
| - new_sum = sum |
67 |
| - if (input['predicted'] == input[self._target_column_name]): |
68 |
| - new_sum += 1 |
69 |
| - return new_sum, count + 1 |
70 |
| - |
71 |
| - def merge_accumulators(self, accumulators): |
72 |
| - sums, counts = zip(*accumulators) |
73 |
| - return sum(sums), sum(counts) |
74 |
| - |
75 |
| - def extract_output(self, (sum, count)): |
76 |
| - accuracy = float(sum) / count if count else float('NaN') |
77 |
| - return {'accuracy': accuracy, 'totalWeightedExamples': count} |
78 |
| - |
79 |
| - |
80 |
| -class FeatureSlicingPipeline(object): |
81 |
| - """The pipeline to generate feature slicing stats. For example, accuracy values given |
82 |
| - "species = Iris-versicolor", "education = graduate", etc. |
83 |
| - It is implemented with DataFlow. |
84 |
| - """ |
85 |
| - @staticmethod |
86 |
| - def _pair_source_with_key(element): |
87 |
| - key = element['key'] |
88 |
| - del element['key'] |
89 |
| - return (key, element) |
90 |
| - |
91 |
| - @staticmethod |
92 |
| - def _join_info((key, info)): |
93 |
| - value = info['source'][0] |
94 |
| - value.update(info['results'][0]) |
95 |
| - return (key, value) |
96 |
| - |
97 |
| - def _pipeline_def(self, p, eval_source, eval_results, features_to_slice, metrics, output_file, |
98 |
| - shard_name_template=None): |
99 |
| - import datalab.mlalpha as mlalpha |
100 |
| - import google.cloud.ml.io as io |
101 |
| - import json |
102 |
| - |
103 |
| - metadata = mlalpha.Metadata(eval_source.metadata) |
104 |
| - target_name, _ = metadata.get_target_name_and_scenario() |
105 |
| - |
106 |
| - # Load eval source. |
107 |
| - eval_source_coder = io.CsvCoder(metadata.get_csv_headers(), metadata.get_numeric_columns()) |
108 |
| - eval_source_data = p | beam.io.ReadFromText(eval_source.source, coder=eval_source_coder) | \ |
109 |
| - beam.Map('pair_source_with_key', FeatureSlicingPipeline._pair_source_with_key) |
110 |
| - |
111 |
| - # Load eval results. |
112 |
| - eval_results_data = p | \ |
113 |
| - beam.Read('ReadEvalResults', beam.io.TextFileSource(eval_results.source, |
114 |
| - coder=EvalResultsCsvCoder(eval_results))) |
115 |
| - |
116 |
| - # Join source with results by key. |
117 |
| - joined_results = {'source': eval_source_data, 'results': eval_results_data} | \ |
118 |
| - beam.CoGroupByKey() | beam.Map('join by key', FeatureSlicingPipeline._join_info) |
119 |
| - |
120 |
| - feature_metrics_list = [] |
121 |
| - for feature_to_slice in features_to_slice: |
122 |
| - feature_metrics = joined_results | \ |
123 |
| - beam.Map('slice_get_key_%s' % feature_to_slice, |
124 |
| - lambda (k,v),f=feature_to_slice: (v[f], v)) | \ |
125 |
| - beam.CombinePerKey('slice_combine_%s' % feature_to_slice, |
126 |
| - AccuracyFn(target_name)) | \ |
127 |
| - beam.Map('slice_prepend_feature_name_%s' % feature_to_slice, |
128 |
| - lambda (k,v),f=feature_to_slice: ('%s:%s' % (f, k), v)) |
129 |
| - feature_metrics_list.append(feature_metrics) |
130 |
| - |
131 |
| - feature_metrics_list | beam.Flatten() | \ |
132 |
| - beam.Map('ToJsonFormat', lambda (k,v): json.dumps({'feature': k, 'metricValues': v})) | \ |
133 |
| - beam.io.WriteToText(output_file, shard_name_template=shard_name_template) |
134 |
| - return p |
135 |
| - |
136 |
| - |
137 |
| - def run_local(self, eval_source, eval_results, features_to_slice, metrics, output_file): |
138 |
| - """Run the pipeline locally. Blocks execution until it finishes. |
139 |
| -
|
140 |
| - Args: |
141 |
| - eval_source: The only supported format is CsvEvalResults now while we may add more. |
142 |
| - Note the source can be either a GCS path or a local path. |
143 |
| - eval_results: The only supported format is CsvEvalSource now while we may add more. |
144 |
| - Note the source can be either a GCS path or a local path. |
145 |
| - features_to_slice: A list of features to slice on. The features must exist in |
146 |
| - eval_source, and can be numeric, categorical, or target. |
147 |
| - metrics: A list of metrics to compute. For classification, it supports "accuracy", |
148 |
| - "logloss". For regression, it supports "RMSE". |
149 |
| - output_file: The path to a local file holding the aggregated results. |
150 |
| - """ |
151 |
| - p = beam.Pipeline('DirectPipelineRunner') |
152 |
| - self._pipeline_def(p, eval_source, eval_results, features_to_slice, metrics, output_file, |
153 |
| - shard_name_template='') |
154 |
| - p.run() |
155 |
| - |
156 |
| - |
157 |
| - def default_pipeline_options(self, output_dir): |
158 |
| - """Get default DataFlow options. Users can customize it further on top of it and then |
159 |
| - send the option to run_cloud(). |
| 24 | +def csv_to_dataframe(csv_path, schema_path): |
| 25 | + """Given a CSV file together with its BigQuery schema file in yaml, load |
| 26 | + content into a dataframe. |
160 | 27 |
|
161 | 28 | Args:
|
162 |
| - output_dir: A GCS path which will be used as base path for tmp and staging dir. |
| 29 | + csv_path: Input CSV path. Can be local or GCS. |
| 30 | + schema_path: Input schema path. Can be local or GCS. |
163 | 31 |
|
164 | 32 | Returns:
|
165 |
| - A dictionary of options. |
166 |
| - """ |
167 |
| - import datalab.context as context |
168 |
| - import datetime |
169 |
| - import google.cloud.ml as ml |
170 |
| - import os |
171 |
| - |
172 |
| - options = { |
173 |
| - 'staging_location': os.path.join(output_dir, 'tmp', 'staging'), |
174 |
| - 'temp_location': os.path.join(output_dir, 'tmp'), |
175 |
| - 'job_name': 'feature-slicing-pipeline' + '-' + \ |
176 |
| - datetime.datetime.now().strftime('%y%m%d-%H%M%S'), |
177 |
| - 'project': context.Context.default().project_id, |
178 |
| - 'extra_packages': ['gs://cloud-datalab/dataflow/datalab.tar.gz', ml.sdk_location], |
179 |
| - 'teardown_policy': 'TEARDOWN_ALWAYS', |
180 |
| - 'no_save_main_session': True |
181 |
| - } |
182 |
| - return options |
183 |
| - |
184 |
| - def run_cloud(self, eval_source, eval_results, features_to_slice, metrics, output_file, |
185 |
| - pipeline_option=None): |
186 |
| - """Run the pipeline in cloud. Returns when the job is submitted. |
187 |
| - Calling of this function may incur some cost since it runs a DataFlow job in Google Cloud. |
188 |
| - If pipeline_option is not specified, make sure you are signed in (through Datalab) |
189 |
| - and a default project is set so it can get credentials and projects from global context. |
190 |
| -
|
191 |
| - Args: |
192 |
| - eval_source: The only supported format is CsvEvalResults now while we may add more. |
193 |
| - The source needs to be a GCS path and is readable to current signed in user. |
194 |
| - eval_results: The only supported format is CsvEvalSource now while we may add more. |
195 |
| - The source needs to be a GCS path and is readable to current signed in user. |
196 |
| - features_to_slice: A list of features to slice on. The features must exist in |
197 |
| - eval_source, and can be numeric, categorical, or target. |
198 |
| - metrics: A list of metrics to compute. For classification, it supports "accuracy", |
199 |
| - "logloss". For regression, it supports "RMSE". |
200 |
| - pipeline_option: If not specified, use default options. Recommend customizing your options |
201 |
| - based on default one obtained from default_pipeline_options(). For example, |
202 |
| - options = fsp.default_pipeline_options() |
203 |
| - options['num_workers'] = 10 |
204 |
| - ... |
205 |
| - output_file: A GCS file prefix holding the aggregated results. |
206 |
| - """ |
207 |
| - import os |
208 |
| - if pipeline_option is None: |
209 |
| - output_dir = os.path.dirname(output_file) |
210 |
| - pipeline_option = self.default_pipeline_options(output_dir) |
211 |
| - opts = beam.pipeline.PipelineOptions(flags=[], **pipeline_option) |
212 |
| - p = beam.Pipeline('DataflowPipelineRunner', options=opts) |
213 |
| - self._pipeline_def(p, eval_source, eval_results, features_to_slice, metrics, output_file) |
214 |
| - p.run() |
215 |
| - |
| 33 | + Loaded pandas dataframe. |
| 34 | + """ |
| 35 | + with ml.util._file.open_local_or_gcs(schema_path, mode='r') as f: |
| 36 | + schema = yaml.safe_load(f) |
| 37 | + _MAPPINGS = { |
| 38 | + 'FLOAT': np.float64, |
| 39 | + 'INTEGER': np.int64, |
| 40 | + 'TIMESTAMP': np.datetime64, |
| 41 | + 'BOOLEAN': np.bool, |
| 42 | + } |
| 43 | + for item in schema: |
| 44 | + item['type'] = _MAPPINGS.get(item['type'], object) |
| 45 | + names = [x['name'] for x in schema] |
| 46 | + dtype = {x['name']: x['type'] for x in schema} |
| 47 | + with ml.util._file.open_local_or_gcs(csv_path, mode='r') as f: |
| 48 | + return pd.read_csv(f, names=names, dtype=dtype) |
0 commit comments