-
Notifications
You must be signed in to change notification settings - Fork 386
/
Copy pathbinary-elementwise-operator-tester.h
360 lines (322 loc) · 12.7 KB
/
binary-elementwise-operator-tester.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#pragma once
#include <gtest/gtest.h>
#include <algorithm>
#include <array>
#include <cmath>
#include <cstddef>
#include <cstdlib>
#include <functional>
#include <initializer_list>
#include <limits>
#include <random>
#include <vector>
#include <xnnpack.h>
class BinaryElementwiseOperatorTester {
public:
enum class OperationType {
Unknown,
Add,
Divide,
Maximum,
Minimum,
Multiply,
Subtract,
};
inline BinaryElementwiseOperatorTester& input1_shape(std::initializer_list<size_t> input1_shape) {
assert(input1_shape.size() <= XNN_MAX_TENSOR_DIMS);
this->input1_shape_ = std::vector<size_t>(input1_shape);
return *this;
}
inline const std::vector<size_t>& input1_shape() const {
return this->input1_shape_;
}
inline size_t input1_dim(size_t i) const {
return i < num_input1_dims() ? this->input1_shape_[i] : 1;
}
inline size_t num_input1_dims() const {
return this->input1_shape_.size();
}
inline size_t num_input1_elements() const {
return std::accumulate(
this->input1_shape_.begin(), this->input1_shape_.end(), size_t(1), std::multiplies<size_t>());
}
inline BinaryElementwiseOperatorTester& input2_shape(std::initializer_list<size_t> input2_shape) {
assert(input2_shape.size() <= XNN_MAX_TENSOR_DIMS);
this->input2_shape_ = std::vector<size_t>(input2_shape);
return *this;
}
inline const std::vector<size_t>& input2_shape() const {
return this->input2_shape_;
}
inline size_t input2_dim(size_t i) const {
return i < num_input2_dims() ? this->input2_shape_[i] : 1;
}
inline size_t num_input2_dims() const {
return this->input2_shape_.size();
}
inline size_t num_input2_elements() const {
return std::accumulate(
this->input2_shape_.begin(), this->input2_shape_.end(), size_t(1), std::multiplies<size_t>());
}
inline BinaryElementwiseOperatorTester& qmin(uint8_t qmin) {
this->qmin_ = qmin;
return *this;
}
inline uint8_t qmin() const {
return this->qmin_;
}
inline BinaryElementwiseOperatorTester& qmax(uint8_t qmax) {
this->qmax_ = qmax;
return *this;
}
inline uint8_t qmax() const {
return this->qmax_;
}
inline BinaryElementwiseOperatorTester& operation_type(OperationType operation_type) {
this->operation_type_ = operation_type;
return *this;
}
inline OperationType operation_type() const {
return this->operation_type_;
}
inline BinaryElementwiseOperatorTester& iterations(size_t iterations) {
this->iterations_ = iterations;
return *this;
}
inline size_t iterations() const {
return this->iterations_;
}
float Compute(float a, float b) const {
switch (operation_type()) {
case OperationType::Add:
return a + b;
case OperationType::Divide:
return a / b;
case OperationType::Maximum:
return std::max<float>(a, b);
case OperationType::Minimum:
return std::min<float>(a, b);
case OperationType::Multiply:
return a * b;
case OperationType::Subtract:
return a - b;
default:
return std::nanf("");
}
}
void TestF32() const {
ASSERT_NE(operation_type(), OperationType::Unknown);
std::random_device random_device;
auto rng = std::mt19937(random_device());
auto f32rng = std::bind(std::uniform_real_distribution<float>(0.01f, 1.0f), rng);
// Compute generalized shapes.
std::array<size_t, XNN_MAX_TENSOR_DIMS> input1_dims;
std::array<size_t, XNN_MAX_TENSOR_DIMS> input2_dims;
std::array<size_t, XNN_MAX_TENSOR_DIMS> output_dims;
std::fill(input1_dims.begin(), input1_dims.end(), 1);
std::fill(input2_dims.begin(), input2_dims.end(), 1);
std::fill(output_dims.begin(), output_dims.end(), 1);
std::copy(input1_shape().cbegin(), input1_shape().cend(), input1_dims.end() - num_input1_dims());
std::copy(input2_shape().cbegin(), input2_shape().cend(), input2_dims.end() - num_input2_dims());
for (size_t i = 0; i < XNN_MAX_TENSOR_DIMS; i++) {
if (input1_dims[i] != 1 && input2_dims[i] != 1) {
ASSERT_EQ(input1_dims[i], input2_dims[i]);
}
output_dims[i] = std::max(input1_dims[i], input2_dims[i]);
}
const size_t num_output_elements =
std::accumulate(output_dims.begin(), output_dims.end(), size_t(1), std::multiplies<size_t>());
// Compute generalized strides.
std::array<size_t, XNN_MAX_TENSOR_DIMS> input1_strides;
std::array<size_t, XNN_MAX_TENSOR_DIMS> input2_strides;
std::array<size_t, XNN_MAX_TENSOR_DIMS> output_strides;
size_t input1_stride = 1, input2_stride = 1, output_stride = 1;
for (size_t i = XNN_MAX_TENSOR_DIMS; i != 0; i--) {
input1_strides[i - 1] = input1_dims[i - 1] == 1 ? 0 : input1_stride;
input2_strides[i - 1] = input2_dims[i - 1] == 1 ? 0 : input2_stride;
output_strides[i - 1] = output_stride;
input1_stride *= input1_dims[i - 1];
input2_stride *= input2_dims[i - 1];
output_stride *= output_dims[i - 1];
}
std::vector<float> input1(XNN_EXTRA_BYTES / sizeof(float) + num_input1_elements());
std::vector<float> input2(XNN_EXTRA_BYTES / sizeof(float) + num_input2_elements());
std::vector<float> output(num_output_elements);
std::vector<float> output_ref(num_output_elements);
for (size_t iteration = 0; iteration < iterations(); iteration++) {
std::generate(input1.begin(), input1.end(), std::ref(f32rng));
std::generate(input2.begin(), input2.end(), std::ref(f32rng));
std::fill(output.begin(), output.end(), nanf(""));
// Compute reference results.
for (size_t i = 0; i < output_dims[0]; i++) {
for (size_t j = 0; j < output_dims[1]; j++) {
for (size_t k = 0; k < output_dims[2]; k++) {
for (size_t l = 0; l < output_dims[3]; l++) {
for (size_t m = 0; m < output_dims[4]; m++) {
for (size_t n = 0; n < output_dims[5]; n++) {
output_ref[i * output_strides[0] + j * output_strides[1] + k * output_strides[2] + l * output_strides[3] + m * output_strides[4] + n * output_strides[5]] = Compute(
input1[i * input1_strides[0] + j * input1_strides[1] + k * input1_strides[2] + l * input1_strides[3] + m * input1_strides[4] + n * input1_strides[5]],
input2[i * input2_strides[0] + j * input2_strides[1] + k * input2_strides[2] + l * input2_strides[3] + m * input2_strides[4] + n * input2_strides[5]]);
}
}
}
}
}
}
const float accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
const float accumulated_range = accumulated_max - accumulated_min;
const float output_min = num_output_elements == 1 ?
-std::numeric_limits<float>::infinity() : accumulated_min + accumulated_range / 255.0f * float(qmin());
const float output_max = num_output_elements == 1 ?
+std::numeric_limits<float>::infinity() : accumulated_max - accumulated_range / 255.0f * float(255 - qmax());
for (float& output_value : output_ref) {
output_value = std::min(std::max(output_value, output_min), output_max);
}
// Create, setup, run, and destroy a binary elementwise operator.
ASSERT_EQ(xnn_status_success, xnn_initialize(nullptr /* allocator */));
xnn_operator_t binary_elementwise_op = nullptr;
switch (operation_type()) {
case OperationType::Add:
ASSERT_EQ(xnn_status_success,
xnn_create_add_nd_f32(
output_min, output_max,
0, &binary_elementwise_op));
break;
case OperationType::Divide:
ASSERT_EQ(xnn_status_success,
xnn_create_divide_nd_f32(
output_min, output_max,
0, &binary_elementwise_op));
break;
case OperationType::Maximum:
ASSERT_EQ(xnn_status_success,
xnn_create_maximum_nd_f32(
0, &binary_elementwise_op));
break;
case OperationType::Minimum:
ASSERT_EQ(xnn_status_success,
xnn_create_minimum_nd_f32(
0, &binary_elementwise_op));
break;
case OperationType::Multiply:
ASSERT_EQ(xnn_status_success,
xnn_create_multiply_nd_f32(
output_min, output_max,
0, &binary_elementwise_op));
break;
case OperationType::Subtract:
ASSERT_EQ(xnn_status_success,
xnn_create_subtract_nd_f32(
output_min, output_max,
0, &binary_elementwise_op));
break;
default:
FAIL() << "Unsupported operation type";
}
ASSERT_NE(nullptr, binary_elementwise_op);
// Smart pointer to automatically delete binary_elementwise_op.
std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_binary_elementwise_op(binary_elementwise_op, xnn_delete_operator);
switch (operation_type()) {
case OperationType::Add:
ASSERT_EQ(xnn_status_success,
xnn_setup_add_nd_f32(
binary_elementwise_op,
num_input1_dims(),
input1_shape().data(),
num_input2_dims(),
input2_shape().data(),
input1.data(), input2.data(), output.data(),
nullptr /* thread pool */));
break;
case OperationType::Divide:
ASSERT_EQ(xnn_status_success,
xnn_setup_divide_nd_f32(
binary_elementwise_op,
num_input1_dims(),
input1_shape().data(),
num_input2_dims(),
input2_shape().data(),
input1.data(), input2.data(), output.data(),
nullptr /* thread pool */));
break;
case OperationType::Maximum:
ASSERT_EQ(xnn_status_success,
xnn_setup_maximum_nd_f32(
binary_elementwise_op,
num_input1_dims(),
input1_shape().data(),
num_input2_dims(),
input2_shape().data(),
input1.data(), input2.data(), output.data(),
nullptr /* thread pool */));
break;
case OperationType::Minimum:
ASSERT_EQ(xnn_status_success,
xnn_setup_minimum_nd_f32(
binary_elementwise_op,
num_input1_dims(),
input1_shape().data(),
num_input2_dims(),
input2_shape().data(),
input1.data(), input2.data(), output.data(),
nullptr /* thread pool */));
break;
case OperationType::Multiply:
ASSERT_EQ(xnn_status_success,
xnn_setup_multiply_nd_f32(
binary_elementwise_op,
num_input1_dims(),
input1_shape().data(),
num_input2_dims(),
input2_shape().data(),
input1.data(), input2.data(), output.data(),
nullptr /* thread pool */));
break;
case OperationType::Subtract:
ASSERT_EQ(xnn_status_success,
xnn_setup_subtract_nd_f32(
binary_elementwise_op,
num_input1_dims(),
input1_shape().data(),
num_input2_dims(),
input2_shape().data(),
input1.data(), input2.data(), output.data(),
nullptr /* thread pool */));
break;
default:
FAIL() << "Unsupported operation type";
}
ASSERT_EQ(xnn_status_success,
xnn_run_operator(binary_elementwise_op, nullptr /* thread pool */));
// Verify results.
for (size_t i = 0; i < output_dims[0]; i++) {
for (size_t j = 0; j < output_dims[1]; j++) {
for (size_t k = 0; k < output_dims[2]; k++) {
for (size_t l = 0; l < output_dims[3]; l++) {
for (size_t m = 0; m < output_dims[4]; m++) {
for (size_t n = 0; n < output_dims[5]; n++) {
const size_t index =
i * output_strides[0] + j * output_strides[1] + k * output_strides[2] + l * output_strides[3] + m * output_strides[4] + n * output_strides[5];
ASSERT_NEAR(output[index], output_ref[index], 1.0e-6f * std::abs(output_ref[index]))
<< "(i, j, k, l, m, n) = (" << i << ", " << j << ", " << k << ", " << l << ", " << m << ", " << n << ")";
}
}
}
}
}
}
}
}
private:
std::vector<size_t> input1_shape_;
std::vector<size_t> input2_shape_;
uint8_t qmin_{0};
uint8_t qmax_{255};
OperationType operation_type_{OperationType::Unknown};
size_t iterations_{3};
};